

Know-how for Horticulture™

Effects of potato seed characteristics on seed-piece breakdown and poor emergence

Dr. Hoong Pung Serve-Ag Research Pty Ltd

Project Number: PT02017

PT02017

This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the potato industry.

The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the potato unprocessed and value-added industries.

All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government.

The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests.

ISBN 0 7341 1059 6

Published and distributed by: Horticultural Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: horticulture@horticulture.com.au

© Copyright 2005

FINAL REPORT

Effects of potato seed characteristics on seed-piece breakdown and poor emergence

Client:	Horticulture Australia Limited			
Author:	Dr. Hoong Pung			
Researchers:	Dr. Hoong Pung & Diane Sward			
Report Number:	HPT02017			
Report Date:	25 January 2005			
	Serve-Ag Research Head Office 16 Hillcrest Road Devonport Tas 7310 Australia Telephone: +61 3 6423 2044 Facsimile: +61 3 6423 4876 Email: <u>sar@serve-ag.com.au</u> Web: <u>www.serve-agresearch.com.au</u>			

Project Number:	PT02017
Principal Investigator:	Dr Hoong Pung Serve-Ag Research Pty Ltd 16 Hillcrest Road Devonport Tasmania 7310
	Phone (03) 6423 2044 Fax (03) 6423 4876 Email: hpung@serve-ag.com.au
Report Date:	25 January 2005

Key Research Personnel:

Dr Hoong Pung and Diane Sward Serve-Ag Research Pty Ltd 16 Hillcrest Road Devonport Tasmania 7310 Australia

The research contained in this report was funded by Horticulture Australia Ltd, the potato industry and the Australian Government, to investigate the potential of a range of seed values that may be useful indicators of potato seed quality and performance.

Funding Sources:

- Horticulture Australia Ltd
- Potato Industry (levies)
- Australian Government

Any recommendations contained in this publication do not necessarily represent current Horticulture Australia Limited policy. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without first obtaining specific, independent professional advice in respect of the matters set out in this publication.

Table of Contents

MEDIA SUMMARY	1
TECHNICAL SUMMARY	1
RECOMMENDATIONS	1
INTRODUCTION	2
BACKGROUND	2
Аімз	2
MATERIALS & METHODS	3
LABORATORY STUDIES	3
FIELD TRIALS	4
STATISTICAL ANALYSIS	4
RESULTS	5
WOUND-HEALING OF SEED LINES	5
SUSCEPTIBILITY OF SEED LINES TO DRY ROT	6
SEED FIRMNESS, DRY ROT SUSCEPTIBILITY AND SPROUTING CAPACITY	7
NUTRIENT EFFECTS ON SEED FIRMNESS	8
TISSUE VS SEED FIRMNESS	9
TISSUE FIRMNESS AND NITROGEN LEVELS IN SEED LINES	9
SPECIFIC GRAVITY OF SEEDS	10
SEED VALUES AND FIELD PERFORMANCE	11
DISCUSSIONS	13
CONCLUSIONS	14
REFERENCES	15
ACKNOWLEDGMENTS	15
APPENDIX I – STATISTICAL ANALYSIS	16
APPENDIX II – LABORATORY DATA	20
APPENDIX III – ANALYTICAL TEST DATA	25
APPENDIX IV – FIELD DATA	27

Media Summary

This project is a feasibility study, conducted to investigate the potential of a range of seed values that may be useful indicators of potato seed quality and performance. The values examined in this study were specific gravity, seed and tissue firmness, wound-healing, nutrient elements in sap and dry tissue from tuber seeds, susceptibility to dry rot, sprouting capacity, and field performance in a replicated field trial.

This study identified several novel methods for determining seed values that have potential as seed quality indicators. These methods are wound healing, seed-piece breakdown, assessing cut seed susceptibility to dry rot, seed and tissue firmness, the nutrient elements in sap and dry tissue of tuber seeds. These methods are readily available, and relatively cheap, rapid and simple to carry out.

The seed values that showed greatest potential as quality indicators are susceptibility to dry rot, seed firmness, manganese, nitrate, phosphorous and magnesium in sap of tuber seeds, and manganese and nitrogen in dry tissue of tuber seeds.

Technical Summary

This project is a feasibility study, conducted to investigate the potential of a range of seed values that may be useful indicators of potato seed quality and performance. The values examined in this study were specific gravity, seed and tissue firmness, wound-healing, nutrient elements in sap and dry tissue from tuber seeds, susceptibility to dry rot, sprouting capacity, and field performance in a replicated field trial.

This study identified several novel methods for determining seed values that have potential as seed quality indicators. These methods are wound healing, seed-piece breakdown, assessing cut seed susceptibility to dry rot, seed and tissue firmness, the nutrient elements in sap and dry tissue of tuber seeds. These methods are readily available, and relatively cheap, rapid and simple to carry out.

The seed values that showed potential as quality indicators are susceptibility to dry rot, seed firmness, manganese, nitrate, phosphorous and magnesium in sap of tuber seeds, and manganese and nitrogen in dry tissue of tuber seeds.

Recommendations

Further investigations are recommended to determine the potential of the seed quality indicators identified in this study over several years to ensure their consistency and reliability.

If proven, standard protocols for the test methodology must be established, so that the tests can be conducted in a consistent manner in different facilities.

Introduction

Background

Potato seed certification currently focuses on identification of diseases in the parent crop, and visual assessment of tuber diseases. Apart from transmittable diseases, this information often does not provide information on the potential seed quality and performance. To produce a high-yielding, high-quality crop, you must start with high-quality seed, with seed-pieces that are in good condition at planting. However, there is a lack of suitable indicators to define and determine seed quality.

The current potato seed certification is mainly confined to the visual assessments of the parent crop and harvested tuber seeds for major diseases, and to ensure that disease levels are within the acceptable limits. Apart from preventing disease transmission, the certification does not provide information on the potential seed performance. As the importance of seed quality is being recognised, some attempts have been made to conduct performance testing. These include overseas studies in growing and evaluating plants with grow-out trials in greenhouses or open fields during winter (James 2000, Idaho Crop Improvement 1998, Central Science Laboratory 1999). This approach, however, is time-consuming and costly to do on a large scale. Another approach to seed testing is to conduct a range of disease presence evaluations along with an elemental or nutrient analysis of the seed (Bennett 1999). The logic behind the elemental analysis is that the seed has to supply all the nutrients for the growth of the new plant. Therefore, all the nutritional requirements for the plant need to be packaged in the seed for it to be of high quality.

Specific gravity of potatoes is an important determinant of harvest quality on potatoes destined for processing into potato chips or crisps. This attribute of a tuber is an indicator that the industry uses as a reference to judge fry quality, baking characteristics and storability. More importantly, the specific gravity measurements also reflect environmental factors and cultural management procedures that were made during the production season. While much attention has been given to the link between potato specific gravity, tuber size and its processing quality, there has been little or no study on their possible link to seed quality. A recent study conducted in Tasmania on the healing of cut seeds in 2000/01 (Horticulture Australia project PT00033) indicated that specific gravity might be a useful indicator of seed quality. In the study, seeds with a higher specific gravity tended to heal faster when cut, making them less susceptible to rot. However, further studies are needed to investigate the potential of specific gravity measurements as an indicator of seed quality.

Controlling seed-piece decay is a perennial problem, and severity can vary from year to year depending on variety, seed lot, seed condition, seed handling, and the presence of bacteria and the *Fusarium* dry rot fungal pathogen. During the initial stage of healing, the cut surface of a seed-piece is open to the entry of disease pathogens. The rapid healing of wounds on cut seeds provides a rapid and uniform sealing of the cut surface, and helps prevent moisture loss and the penetration of pathogens into the seed-piece. Rapid healing of cut wounds of seeds could be another useful indicator for seed quality.

Seed maturity and physiological age are known to be critical factors in seed quality and performance. The factors that influence physiological age are complex and involve combinations of many factors, including planting time, conditions and crop management, seed storage conditions, cutting and handling, and subsequent planting conditions (McKeown 1990, McKeown 1994, Firman et al 1992, Pavlista 2004, Schrage 2000, Struik & Wiersema 1999). A HAL funded project is currently being conducted to identify seed crop management strategies and storage conditions that affect seed physiological quality (Brown 2004).

Aims

This project was a feasibility study, conducted to investigate the potential of a range of seed values that may be useful indicators on potato seed quality and performance. For practical purposes, this project focuses on seed values that could be measured in relatively rapid analytical and laboratory tests that are available and that are cost effective to do. The values examined in this study were specific gravity, seed and tissue firmness, wound-healing, nutrient elements in sap and dry tissue from tuber seeds. Seed performance was based on susceptibility to dry rot when cut setts were challenged with spores of *Fusarium sulphureum*, sprouting capacity, and field performance of the same seed lines in a replicated field trial.

Materials & Methods

Laboratory Studies

A total of 65 seed lines were assessed for nutrient elements in sap and tissue analyses, specific gravity, sprouting capacity and seed and tissue firmness. These properties were then compared to the seed lines response to wound healing, and susceptibility to *Fusarium* dry rot.

Sap Analysis

Sap from tissue taken from the middle of six tuber seeds in each line was analysed for the macro and micro nutrient elements: nitrates, phosphorus, potassium, calcium, magnesium, zinc, boron, sulphur, copper, iron, and manganese. Sap analysis was carried out at the Serve-Ag analytical services in Tasmania.

Tissue Analysis

Four tubers from the seed lines were analysed using a dry ash method for all the macro and micro nutrient elements listed in the sap analysis, plus molybdenum and cobalt. Pivotest Laboratories in Victoria carried out the dry tissue analysis.

Specific Gravity

Approximately 5 kg of potatoes was placed into a bag. The weight of the potatoes in air was recorded. The bag of potatoes was then placed in a bucket of water, and the weight of the potatoes in water was recorded. The specific gravity of potatoes was tabulated using the formula:

Specific gravity = (weight in air) ÷ [(weight in air) – (weight in water)]

Seed firmness

Seed and tissue firmness were measured using a penetrometer. Seed firmness was based on the pressure required to push the penetrometer through the surface of a non-peeled tuber. Tissue firmness was based on the pressure required to push through the tissues from the surface of a peeled tuber. The results were expressed as an average of 5 to 10 tubers tested per seed line.

Sprouting capacity

The sprouting capacity assessment, or the rate and pattern of sprout development under controlled conditions, was based on the methods used by Brown (2001). After 20 days, the emerging stems were removed from each tuber, then counted and weighed. The percentage sprouting capacity was then tabulated as the total sprout weight divided by total tuber weight, and multiplied by 100. The test was conducted in a room at 20°C with 12 hours simulated daylight.

Wound healing

After cutting, setts were immediately placed into paper bags and kept in a half-tonne bin, covered with thick Hessian bags in order to reduce aeration and maintain high humidity, for one week. After one week, the bags were removed from the bin and allowed to air-dry; then maintained at humidity levels ranging from 70% to 83%. The number of setts with superficial and deep rot from the cut surfaces was recorded for each of the seed lines, and the percentages of setts with superficial lesions and deep lesions were tabulated.

The setts were also rated for presence of bacteria or fungal lesions on the cut surfaces, where: rating 1 = no lesions, rating 2 = less than 30% surface with lesions, and rating 3 = more than 30% surface with lesions. Using a light microscope, the width of the corky layer from the cut surfaces was measured on three setts per seed line, with one representative measurement taken from each of the ratings. The corky layer thickness index was then calculated according to the formula:

Corky layer thickness index = ((A1 x B1) + (A2 x B2) + (A3 x B3)) / Total number of setts,

where A1, A2 and A3 are the number of setts in rating 1, 2 and 3, respectively, and B1, B2, and B3 are the corky layer thickness in rating 1, 2 and 3, respectively

Susceptibility to dry rot (Fusarium sulphureum)

Samples of tubers from each seed line were cut into halves. The seed-pieces from each seed line were divided into two paper bags. The seed setts were then inoculated with spores of *F. sulphureum* at two different times; one lot was inoculated at 20 hours after cutting, and the other lot was inoculated at 40 hours after cutting. The treated setts were kept moist in paper bags, and after three weeks, they were assessed for *Fusarium* dry rot on the cut surfaces.

Number of tubers used for each analysis

As remaining tuber seeds from a field trial were used for the laboratory analyses, the number of tubers used for each test varied according to the number of available tubers. Only the sap and tissue analyses used the same number of tubers for all seed lines.

Type of analysis	Average number of tubers/seed line (range)
1. Sap analysis	6 (6)
2. Tissue analysis	4 (4)
3. Specific gravity	9 (6-19)
4. Seed firmness	9 (6-10)
5. Physiological age	10 (5-10)
6. Rate of wound healing	32 (5-60)
7. Dry rot test	32 (5-60)

Field Trials

Tuber seeds from the 60 seed lines examined in laboratory studies were planted in a field trial at Riana in 2002/03, on a red ferrosol soil, to assess their field performance. The trial design was complete randomised block design; with 3 replicate plots (plot size = 10 m x 1.6 m planted with 60 setts). Setts were planted in November 2002, and harvested in June 2003. Assessments were conducted to determine the percentage plant emergence (one month after planting), mean plant height of five plants (two month after planting), and total tuber yield, tuber sizes, and disease after harvest.

Statistical Analysis

Forty sets of data values generated in analytical and laboratory tests were analysed in pair-wise correlation analysis. A step-wise multiple regression analysis was then conducted on potentially useful seed indicators with values identified in the initial pair-wise correlation analysis.

With significant relationships determined in the step-wise multiple regression analysis, where possible, seed values were categorized according to a selective range, and then analysed in a one-way analysis of variance. Pair-wise comparisons using the Fisher's least significant difference (LSD) procedure were applied to the mean values.

<u>Results</u>

A total of sixty-five seed lines were examined in analytical and laboratory tests, and sixty seed lines were evaluated in a replicated field trial for yield performance. Most of the tubers from the seed lines had little or no disease, and where a disease was present, it was within the acceptable seed certification limits. Diseases found on the seed lines in visual assessments were *Fusarium* dry rot (6%), common scab (12%), silver scurf (37%), black scurf (40%), and root-knot nematode (17%). Diseases caused by *Fusarium* and *Rhizoctonia* may affect seed-piece breakdown and sprouting capacity, respectively. Other diseases such as common scab, silver scurf and root-knot nematode are likely to have little or no effect on wound-healing, sprouting and seed-piece breakdown. The most common diseases on the seed lines were silver scurf by *Helminthosporium solani* and black scurf by *Rhizoctonia*. Diseases present in the seed lines were not correlated to their field performance or disease on daughter tubers.

Although 42 sets of data values generated in this study were analysed, most of the values were found to have no significant effects (p > 0.05) on seed performance indicators such as seed-piece breakdown, wound-healing, sprouting capacity and field performance. Therefore, only data values that were found to have significant effects on these performance indicators are discussed further.

Wound-healing of seed lines

As the wound-healing test was carried out under relatively harsh conditions, with high humidity and poor aeration, 80% of the seed lines showed some rot on the cut surfaces. Most of the rot, however, was superficial and was rapidly sealed off after air-drying. On the setts affected by *Fusarium* dry rot, the

lesions progressed further into the cut surfaces and became deep seated (Photograph 1). *Fusarium* dry rot was present on 20% of the seed lines, with infection ranging from 2% to 86% setts in the affected seed lines (Figure 1). This showed that the presence of *Fusarium* inoculum on seed lines posed the most serious threat to the quality of cut setts.

The corky layer thickness on the cut surface was highly variable, even within the same seed line, as well as between different seed lines. The corky layer thickness generally increased in response to the level of bacterial and fungal growth. On a relatively clean surface with little or no organism growth, the corky layer thickness ranged from 10

Photograph 1: Dry rot infected setts (left) and healthy setts (right)

to 42.5 micron. There were no relationships between the corky layer thickness and other seed values measured in this study. This indicates that the corky layer thickness is an unsuitable quality characteristic.

Figure 1: Seed lines affected by dry rot on cut setts

Susceptibility of seed lines to dry rot

In a test where cut setts were inoculated with *Fusarium* spores at 20 hours after cutting, a step-wise multiple linear regression analysis showed that the seed lines' susceptibility to dry rot were significantly affected by the magnesium (Mg) levels in sap analysis and the percentage of nitrogen (N) in dry tissue analysis (p < 0.001).

The multiple regression model that best describes the dry rot susceptibility is:

Y = 143.59 - 0.114X1 - 21.968X2, where

- Y = % Setts with dry rot in a seed line challenged with *Fusarium* at 20 hours after cutting
- X1 = Mg level in sap from tubers (ppm)
- X2 = N level in tissues of tubers (%)

The R-squared statistic indicates that the fitted model explains 23% of the variability in the seed lines' susceptibility to dry rot. According to the model, the seed lines' susceptibilities decreased with increases in the Mg and N levels. The negative relationships between the percentage of setts affected by dry rot and the levels of Mg in sap and N in tissues are shown in Figures 2 and 3, respectively. These two nutrients may be potential indicators of a seed line's susceptibility to dry rot and seed-piece breakdown.

Seed firmness, dry rot susceptibility and sprouting capacity

In a test where cut setts were inoculated with *Fusarium* spores at 40 hours after cutting, a step-wise multiple linear regression analysis showed that the average seed firmness was positively correlated to its susceptibility to dry rot and seed sprouting capacity.

		The number of seed lines with		_
Seed firmness rating	Pressure range for seed firmness (kPa)	seed firmness measurements within the given range	Mean % <i>Fusarium</i> dry rot (40hr) *	Standard error
1	> 9.0 to 9.5	2	36.0 a	14.0
2	> 9.5 to 10.0	3	42.0 ab	12.7
3	> 10.0 to 10.5	21	57.8 abc	4.2
4	> 10.5 to 11.0	27	62.1 bc	3.2
5	> 11.0 to 11.5	11	69.9 c	4.0
6	> 11.5 to 12.0	1	90.0 c	0

Table 1. The relationship of seed infinitess and susceptibility of cut setts to dry for	Table 1: The relationsh	ip of seed firmness and su	sceptibility of cut setts to dry	rot
---	-------------------------	----------------------------	----------------------------------	-----

* Means followed by the same letter are not significantly different at the 5% level according to Fisher's LSD test.

A further analysis using a one-way analysis of variance on the frequency of seed lines in a range of seed firmness, showed a significant difference between seed firmness and the percentage of setts infected by dry rot (Table 1, Figure 4). Generally, increases in the range of seed firmness in the seed lines were associated with increased percentages of setts with dry rot.

Table 2: The relationship between seed firmness and seed sprouting capacity	
The number of seed lines with seed	

Seed firmness rating	Range of seed firmness (kPa)	The number of seed lines with seed firmness measurements within the given range	Sprouting capacit	y * Standard error
1	> 9.0 to 9.5	2	19.8 a	3.5
2	> 9.5 to 10.0	3	15.0 ab	3.8
3	> 10.0 to 10.5	18	11.4 ab	0.6
4	> 10.5 to 11.0	23	11.7 bc	0.8
5	> 11.0 to 11.5	8	10.2 c	0.9

* Means followed by the same letter are not significantly different at the 5% level according to Fisher's LSD test.

In contrast to dry rot, a negative trend was shown in the analysis between the seed firmness and sprouting capacity (Table 2, Figure 5). Generally, increases in the range of seed firmness were associated with decreased seed sprouting capacity.

Some seed tubers produced sprouts, which were removed prior to the tests. The seed tubers that produced sprouts prior to the tests tended to have slightly with wrinkled skin and felt softer in texture. These tubers tended to have higher seed firmness readings compared to firm and fully hydrated tubers. These findings suggest that seed firmness may be related to the turgidity of the tubers in the different seed lines.

Nutrient effects on seed firmness

A step-wise multiple regression analyses between seed firmness and all nutrients in tuber sap and tissues, showed that only manganese (Mn) has a significant effect on seed firmness (Table 3).

A one-way analysis of variance indicated significant differences between seed firmness and the ranges of Mn levels in seeds, as determined in sap analysis and dry tissue analysis (Table 3, Figures 6 & 7). Generally, increased levels of Mn in sap and tissues were associated with a decrease in the range of seed firmness in the seed lines.

Table 3: The relationship between tuber seed skin firmness and manganese levels in sap and tissue analyses

Seed		The number of Sap analysis		Dry tissue analysis		
firmness rating	Range of seed firmness (kPa)	seed lines within the given range	Mn (ppm) *	Standard error	Mn (%) *	Standard error
1	> 9.0 to 9.5	2	3.00 c	0.65	20.00 b	1.00
2	> 9.5 to 10.0	3	2.68 bc	0.28	27.00 b	14.18
3	> 10.0 to 10.5	21	1.98 a	0.10	11.38a	0.83
4	> 10.5 to 11.0	27	1.87 a	0.08	9.47a	0.42
5	> 11.0 to 11.5	11	2.09 ab	0.14	9.77a	0.95

* Means followed by the same letter are not significantly different at the 5% level according to Fisher's LSD test.

Figure 8: The relationship between tissue firmness and seed firmness

Tissue vs seed firmness

The tissue firmness measured on peeled tubers was always lower than the seed firmness. The tissue firmness was, however, closely related to the seed firmness on tubers from the same seed lines, as shown in Figure 8.

Tissue firmness and nitrogen levels in seed lines

A one-way analysis of variance indicated significant differences between tissue firmness and the ranges of nitrogen (N) and nitrate (NO3) levels determined in seed dry tissue analysis and sap analysis, respectively (Table 4, Figures 9 & 10). Generally, increased ranges of N and NO3 were associated with a decrease in the range of tissue firmness in the seed lines.

Tissue	Range of	The number of	Total NO3 level i	in sap analysis	Total N level in dry tissue analysis		
rating	tissue firmness (kPa)	seed lines within the given range	NO3 *	Standard error	Total N *	Standard error	
1	> 7.5.0 to 8.0	2	5.77 b	0.13	2.25 c	0.05	
2	> 8.0 to 8.5	15	5.48 ab	0.05	2.01 c	0.06	
3	> 8.5 to 9.0	30	5.46 a	0.04	1.89 bc	0.06	
4	> 9.0 to 9.5	16	5.38 a	0.05	1.78ab	0.06	
5	> 9.5 to 10.0	2	5.21 a	0.24	1.40a	0.10	

* Means followed by the same letter are not significantly different at the 5% level according to Fisher's LSD test.

Specific gravity of seeds

No significant relationships could be found between seeds' specific gravity, firmness, susceptibility to dry rot, and their performance in a field trial.

In a step-wise multiple linear regression analysis, specific gravity was significantly influenced by boron (B) and manganese (Mn) in sap nutrients. The model that best describes the relationship is:

Y = 1.164 - 0.007X1 - 0.0114X2, where

- Y = Specific gravity of seed lines
- X1 = B in sap analysis of tuber seeds (ppm)
- X2 = Mn in sap analysis of tuber seeds (ppm)

The R-squared statistic indicates that the fitted model explains 20% of the variability in the seed lines' specific gravity. According to the model, increases in the B and Mn levels in the sap of seeds is associated with decreased specific gravity (Figures 11 and 12).

The relationship between specific gravity and potassium (K) was very weak, and was not significant (p = 0.520). No significant relationships could be found between the seed lines' specific gravity and any tissue nutrients in the seeds.

No other significant relationships could be found between specific gravity and any tissue nutrients or other seed characteristics (eg. seed firmness and susceptibility to dry rot), and seed performance in the field trial.

Figure 13: Seed lines specific gravity and K levels in sap

Seed values and field performance

The total yield of daughter tubers (all sizes) from the seed lines could not be significantly correlated to any seed characteristic measurements. The seed lines' sprouting capacity was also not related to yield of daughter tubers or other assessments in the field trial.

In the field trial, harvested tubers were divided into different size ranges: < 75 g, 75 – 249 g, and 250 – 850 g. In processing to French fries, larger tubers, in the range of 250 g to 850 g, are desirable. Therefore, the % large tuber yield of harvested tubers in the range 250 - 850 g could also be used as a quality indicator.

In a step-wise multiple linear regression analysis, the main factors that significantly affected % large tuber yield were nitrogen (N) in the tissue analysis and phosphorous (P) in the sap analysis. The model that best describes the % large tuber yield is:

Y = 27.847 + 0.0324X1 + 9.7476X2, where

- Y = % Large tuber yield
- X1 = P in sap analysis of tuber seeds (ppm)
- X2 = N level in tissues of tuber seeds (%)

The R-squared statistic indicates that the fitted model explains 40% of the variability in the % large tuber yield. According to the model, the % large tuber yield increased with an increase in the P and N levels. The positive relationships between % large tuber yield and the levels of P in sap and N in tissues are shown in Figures 13 and 14, respectively. These two nutrients may be useful indicators on a seed line's potential to produce a high proportion of large tubers.

In a step-wise multiple linear regression analysis, the mean plant height measured at two months after planting was significantly related to total daughter tuber yield and % large tuber yield. The model that best describes the relationships is:

Y = 190.64 + 5.306X1 - 2.735X2, where

- Y = Mean plant height (cm)
- X1 = Total tuber yield
- X2 = % Large tuber yield

The R-squared statistic indicates that the fitted model explains 49% of the variability in the mean plant height. According to the model, the mean plant height was associated with increases in total yield and decreases in % large tuber yield. The plant height was also related to early or late plant emergence (p = 0.013). Therefore, rapid plant emergence and growth appeared to be associated to high total tuber yield, while slow emergence was associated to high proportion of large tuber yield.

In a further one-way analysis of variance, significant differences were found between the ranges of N and P levels in tuber seeds, and the % large size daughter tubers were examined as listed in Tables 5 and 6. Generally, increased in the ranges of N and P in tuber seeds were associated with increases in the % large size daughter tubers (Figures 15 & 16).

Table 5:	The relation	nship of N	levels in see	d lines and	the proportio	n of large	daughter	tuber y	yield
in a field	d trial								

Range of N-level (% in seed tissue analysis)	The number of seed lines with seed firmness measurements within the given range	Average % large daughter tubers *	Standard error
1.0 – 1.5	9	47.3 a	1.81
> 1.5 – 2.0	36	50.45 a	0.72
> 2.0 – 2.5	14	56.21 b	1.71
> 2.5 – 3.0	1	72.00 c	0.00

* Means followed by the same letter are not significantly different at the 5% level according to Fisher's LSD test.

Table 6:The relationship of P levels in seed lines and the proportion of large daughter tuber yield in a field trial

Range of P level (ppm in seed sap analysis)	The number of seed lines with seed firmness measurements within the given range	Average % large daughter tubers *	Standard error
100 - 150	18	50.32 a	0.99
> 150 - 200	34	51.29 a	0.95
> 200 – 250	7	54.16 a	3.59
 400	1	72.00 b	0.00

* Means followed by the same letter are not significantly different at the 5% level according to Fisher's LSD test.

Discussions

This study identified several novel methods for determining seed values that may be useful as seed quality indicators. These methods are wound healing, seed-piece breakdown, assessing cut seed susceptibility to dry rot, seed and tissue firmness, the nutrient elements in sap, and dry tissue analyses of tuber seeds.

Dry rot caused by *F. sulphureum* appeared to be the most serious threat to seed-piece breakdown. Spores of *F. sulphureum* can germinate, penetrate through cells and spread rapidly on the cut surfaces. Unless the freshly cut seed pieces or setts can seal the wound rapidly, they are vulnerable to *Fusarium* infection. If a high level of *Fusarium* inoculum is present in a seed line, then it is highly susceptible to dry rot unless a fungicide seed treatment is applied after cutting. In this study, 20% of the seed lines were infected by dry rot after cutting. The presence of high levels of *Fusarium* spores may be detected in a simple test by cutting a representative sample of seeds and incubating, as shown in this study. This test can help determine whether fungicide seed treatment for dry rot control is required.

In the absence of *Fusarium* inoculum, the cut seed pieces appeared to have a greater tolerance to decay by soil bacteria and other non-pathogenic fungi. When setts affected by these non-pathogenic organisms were allowed to air-dry, the superficial decay stop and the setts were able to seal off the damaged surfaces. The corky layer thickness on the cut surfaces was found to be highly variable within the same seed line as well as between different seed lines. The variability may be due to the test conditions in this study, and the cell response to decay under anaerobic and moist conditions. The corky layer thickness, therefore, appeared to be an unsuitable seed indicator.

The breakdown of cut potato seed-pieces is a major concern to potato growers, and can seriously reduce crop density and crop vigour. Seed-piece breakdown is determined by the conditions of the seeds, their capacity to heal after cutting, storage conditions, and presence of pathogenic organisms. Under the same storage conditions and presence of pathogens, different seed lines could have different susceptibility to seed-piece breakdown (Pung et al 2001). This indicates that there may be differences between seed lines, particularly in the levels of sap produced after cutting, and their wound-healing capacity to seal and protect the cut surfaces. This study showed a high variability of seed lines' susceptibility to dry rot when challenged with *F. sulphureum* spores after cutting and then incubating under ideal conditions for the pathogen. This variability to infection. The nutrient levels of magnesium in sap and nitrogen in dry tissues of seed lines were shown to be negatively correlated to their susceptibility to dry rot on setts inoculated at 20 hours after cutting. The nature of the effects of these nutrients in tuber seeds and on wound healing is unknown. Further investigations are required to determine their potential use as seed quality indicators.

Seed firmness, the level of pressure required to push a penetrometer through the skin of a tuber, is another interesting value that may be a useful seed quality indicator. Seed firmness was correlated to the setts' susceptibility to dry rot when challenged with *Fusarium* spores 40 hours after cutting, and the seeds' sprouting capacity. Generally, increases in the range of seed firmness, increased their susceptibility to dry rot and decreased the seeds' sprouting capacities. The levels of manganese in sap and dry tissues were negatively correlated to seed firmness; whereby decreases in the manganese levels increased the seed firmness.

The sprouting capacity gives an indication of a seed's physiological age, where physiological young seeds tend to have slow emergence, fewer stems per tuber, lower tuber set and larger tubers at harvest (Blaesing & Kirkwood 2004). However, in this study, the physiological age of the seed lines may have been altered as the samples were moved in and out of cold storage during the sorting process. Seed tubers that produced sprouts prior to the tests tended to have slightly with wrinkled skin and felt softer in texture. These tubers tended to have higher seed firmness readings compared to firm and fully hydrated tubers. These findings suggest that seed firmness may be related to the turgidity of the tubers in the different seed lines. The relationships determined in this study suggest that pre-sprouted seeds tend to have lower sprouting capacity and greater susceptibility to diseases.

Tissue firmness, the level of pressure required to push a penetrometer through a peeled tuber, was closely related to the seed firmness. Nitrogen appeared to be a critical factor in the tissue firmness, where the levels of nitrate in sap and the percentage of nitrogen in the dry tissue of tuber seeds were negatively correlated to tissue firmness. Of the two, seed firmness appeared to be more useful than tissue firmness

as a seed quality indicator, as it showed stronger relationships with other seed quality values such as sprouting capacity and susceptibility to dry rot.

Although specific gravity is a useful quality indicator for processing potato tubers, its usefulness as a seed quality indicator could not be demonstrated in this study.

In field studies, only the percentage of large size tubers, in the range of 250 to 850 g per tuber, was significantly correlated to the phosphorous and nitrogen levels in tuber seeds. Generally, both increased N levels in dry tissues and P levels in the sap of tuber seeds were associated with increases in the proportion of large size daughter tubers. This indicates that the reserves of these two macronutrients in tuber seeds may be vital in producing large size daughter tubers. Large size tubers are desirable for processing potatoes.

Conclusions

This study identified several novel methods and seed values that warrant further investigations to establish their usefulness as seed quality indicators. These values can be determined in methods that are readily available, and are relatively cheap, rapid and simple to carry out.

The potential seed quality indicators are:

- Cut seed-piece susceptibility to dry rot
- Seed firmness
- Sap analysis for Mn, NO3, P and Mg
- Tissue analysis for Mn and N

References

Bennett, M. 1999. Millennial seed – Will evaluation put pressure on growers? Potato Growers, December.

Blaesing, D. & Kirkwood, I. 2004. Potato seed handling and storage – implementing best practice. HAL project PT01030. Final report.

Brown, P. 2004. Best production and storage for seed potato quality. Potato Australia 15: 53.

Central Science Laboratory, 1999. ADAS/CSL Potato Disease Survey. Central Science Laboratory, Sand Hutton, York, UK. Research report on website. Ed. Turner, J. Update 2000. www.csl.gov.uk/environment/environf.htm

Firman, D. M., O'Brian, P.J. & Allen, E.J. 1992. Predicting the emergence of potato sprouts. Journal of Agricultural Science, Cambridge, 118: 55-61.

Idaho Crop Improvement Association, Inc. 1998. Seed certification: Potatoes. Ed. G. Lowry. www.idahocrop.com/potato.htm.

James, S.R. 2000. Seed potato winter test comparison study. Research report on website. Central Oregon Ag Research Centre. Ed. Stephen, R.J. <u>www.css.orst.edu/coarc/winter.htm</u>.

McKeown, A.W. 1990. Growth of early potatoes from different portions of the tubers. Emergence and plant stand. American Potato Journal 67: 751-759.

McKeown, A.W. 1994. Evaluation of chitting to enhance earliness of potatoes grown in southern Ontario. Canadian J. Plant Science, 74: 159-165.

Brown, P. 2001. Improving seed potato production. HAL Project PT98008. Final Report.

Pavlista, A. D. 2004. Physiological aging of seed tubers. Nebraska Potato Eyes, 16 (1): 2-3. University of Nebraska.

Pung, H. & Cross, S., 2001. A comparative evaluation of different materials used for cut potato seed treatments. HAL project PT00033. Final Report.

Schrage, W. 2000. The influence of physiological age on the yield potential of seed potatoes. Valley Potato Grower, May.

Struik, P.C. & Wiersema, S.G. 1999. Control and manipulation of physiological seed tuber quality characteristics of seed tubers. In "Seed potato technology", p97-134.

Acknowledgments

The funding of this project by Horticulture Australia Limited, the Australian potato industry and the Australian Government, is gratefully acknowledged.

The assistance of staff from Simplot Australia Pty Ltd in providing tuber seed samples and yield data from the field trial is gratefully acknowledged.

Serve-Ag Research staff who assisted in this project include Pam Cox and Susan Cross.

Appendix i – Statistical analysis

Susceptibility to dry rot on setts (inoculated 20 hours after cutting)

Multiple Regression Analysis

Dependent variable: drvrot20hr

Estimate	Standard Error	T Statistic	P-Value						
143.59 -0.1144 -21.9679	15.8867 0.0405556 6.2405	9.03836 -2.82081 -3.5202	0.0000 0.0064 0.0008						
	Estimate 143.59 -0.1144 -21.9679	Standard Estimate Error 143.59 15.8867 -0.1144 0.0405556 -21.9679 6.2405	Standard T Estimate Error Statistic 143.59 15.8867 9.03836 -0.1144 0.0405556 -2.82081 -21.9679 6.2405 -3.5202						

Analysis of Variance									
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value				
Model Residual	4909.16 14255.1	2 62	2454.58 229.921	10.68	0.0001				
Total (Corr.)	19164.2	64							

R-squared = 25.6162 percent R-squared (adjusted for d.f.) = 23.2168 percent Standard Error of Est. = 15.1631 Mean absolute error = 11.2811 Durbin-Watson statistic = 1.89056 The equation of the fitted model is dryrot20hr = 143.59 - 0.1144*Mg sap - 21.9679*N drytissue

Seed firmness and seed quality

 Multiple Regression Analysis

 Dependent variable: seed firmness

 Standard
 T

 Parameter
 Estimate
 Error
 Statistic
 P-Value

 CONSTANT
 10.5305
 0.337573
 31.1948
 0.0000

 Dryrot40hr
 0.00756185
 0.00344801
 2.19311
 0.0329

 Sprout capacity
 -0.0371685
 0.015659
 -2.37362
 0.0214

Analysis of Variance									
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value				
Model Residual	2.96533 7.5948	2 51	1.48267 0.148918	9.96	0.0002				
Total (Corr.)	10.5601	53							

R-squared = 28.0804 percent
R-squared (adjusted for d.f.) = 25.2601 percent
Standard Error of Est. = 0.385898
Mean absolute error = 0.309988
Durbin-Watson statistic = 1.8421
The equation of the fitted model is
Seed firmness = 10.5305 + 0.00756185*dryrot40hr - 0.0371685*sproutcapacity

Seed firmness and influence of nutrients on seed tubers

Multiple Regressic	n Analysis				
Dependent variable	: seed firmness				
Parameter	Estimate	St	andard Error	T Statistic	P-Value
CONSTANT Cu_sap Mn_drytissue	10.7464 0.196654 -0.0335003	0. 0.0 0.0	139606 852945 074524	76.9764 2.30559 -4.49524	0.0000 0.0245 0.0000
	Analysis	of Va	riance		
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	4.27433 9.34617	2 62	2.13716 0.150745	14.18	0.0000
Total (Corr.)	13.6205	64			
R-squared = 31.381 R-squared (adjuste Standard Error of Mean absolute erro Durbin-Watson stat The equation of th Seed firmness = 10	6 percent d for d.f.) = 29.1 Est. = 0.388259 r = 0.296548 istic = 1.67953 e fitted model is .7464 + 0.196654*C	681 p u_sap	ercent - 0.0335003	**Mn_drytissue	

Tissue firmness and influence of nutrients on seed tubers

Multiple Regress	ion Analysis				
Dependent variab	le: tissue firmness				
Parameter	Estimate	St	andard Error	T Statistic	P-Value
CONSTANT NO3_sap N_drytissue	10.1765 -0.00220526 -0.484617	0. 0.000 0.	301965 916374 154589	33.7008 -2.4065 -3.13486	0.0000 0.0191 0.0026
	Analysis	of Va	riance		
Source	Sum of Squares	Df	Mean Squa	re F-Ratio	P-Value
Model Residual	2.93257 7.7588	2 62	1.466 0.1251	29 11.72 42	0.0000
Total (Corr.)	10.6914	64			
R-squared = 27.4 R-squared (adjus Standard Error o Mean absolute er Durbin-Watson st The equation of Tissue firmness	293 percent ted for d.f.) = 25. f Est. = 0.353754 ror = 0.292354 atistic = 1.83149 the fitted model is = 10.1765 - 0.00220	0884 p	ercent 3_sap - 0.	484617*N_drytis	sue

Specific gravity vs nutrients on seed tubers

Multiple Regressior	n Analysis				
Dependent variable:	: SGseed				
Parameter	Estimate	St	andard Error	T Statistic	P-Value
CONSTANT B_sap Mn_sap	1.16402 -0.00700288 -0.0114085	0.0 0.00 0.00	107958 265112 485739	107.821 -2.64148 -2.34869	0.0000 0.0105 0.0221
	Analysis	s of Va	riance		
Source	Sum of Squares	Df	Mean Square	e F-Ratio	P-Value
Model Residual	0.00613409 0.0209933	2 61	0.00306704 0.000344152	4 8.91 2	0.0004
Total (Corr.)	0.0271274	63			
R-squared = 22.6122	2 percent	0749 p	ercent		

R-squared (adjusted for d.f.) = 20.0749 percent Standard Error of Est. = 0.0185513 Mean absolute error = 0.0138116 Durbin-Watson statistic = 1.49635 SGseed = 1.16402 - 0.00700288*B_sap - 0.0114085*Mn_sap

% Large tuber yield

Multiple Regressi	on Analysis					
Dependent variabl	e: harvest_%					
Parameter	Estimate	St	andard Error	T Statistic	P-Value	
CONSTANT P_sap N_drytissue	27.8472 0.032399 9.74	3 0.0 4762	.91321 132804 2.2208	7.11621 2.43962 9 4.38	0.0000 0.0178 906	0.0001
	Analysis	of Va	riance			
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value	
Model Residual	977.798 1374.9	2 57	488.899 24.121	20.27	0.0000	
Total (Corr.)	2352.7	59				
R-squared = 41.56 R-squared (adjust Standard Error of Mean absolute err Durbin-Watson sta The equation of t %large tubers = 2	07 percent ed for d.f.) = 39.5 Est. = 4.91132 or = 3.96924 tistic = 2.00834 he fitted model is 7.8472 + 0.032399*1	5102 p P_sap	ercent + 9.74762*N_	drytissue		

Plant height vs tuber yield in the field trial

Multiple Regressio	on Analysis				
Dependent variable	e: mean plant heigh	 t			
Parameter	Estimate	St	andard Error	T Statistic	P-Value
CONSTANT Total tuber yield % large tubers	190.64 5.30609 -2.73507	5 0. 0.	9.4089 844426 563676	3.20894 6.28366 -4.8522	0.0022 0.0000 0.0000
	Analysis (of Va	riance		
Source	Sum of Squares	Df	Mean Squar	e F-Ratio	P-Value
Model Residual	44561.4 42475.2	2 57	22280. 745.17	7 29.90 8	0.0000
Total (Corr.)	87036.6	59			
R-squared = 51.198 R-squared (adjuste Standard Error of Mean absolute error Durbin-Watson stat Mean plant height	85 percent ed for d.f.) = 49.44 Est. = 27.298 or = 21.261 tistic = 1.88672 = 190.64 + 5.30609	862 p *tota	ercent 1 tuber yie	ld - 2.73507*%	large tubers

Appendix ii – Laboratory data

Tuber disease on seed lines

					r
Seed line	Fusarium dry rot	Common scab	Silver scurf	Nematode	Rhizoctonia
1	N	N	N	N	N
2	N	N	N	N	N
3A	N	N	N	N	N
3B	Y	N	N	N	Y
4	N	N	N	N	N
5	N	N	N	N	N
6	N	N	N	Y	N
7	N	Y	N	Y	N
8	N	N	N	N	N
9	N	N	N	N	N
10	N	N	N	N	Y
11	N	N	N	N	N
12	N	N	N	N	Y
13	N	Ν	Ν	Y	Y
14	N	Ν	Ν	N	N
15	N	Ν	Ν	N	N
16	N	Ν	Ν	N	N
17	N	Ν	Y	Y	N
18	N	Ν	Y	Y	N
19	Ν	Ν	Y	N	Y
20	Ν	Ν	Ν	Y	N
21	N	Ν	Ν	Ν	N
22	Ν	Y	Ν	Ν	Y
23	Ν	Ν	Ν	Ν	Y
24	N	Ν	Ν	Ν	Y
25	N	Y	Ν	N	N
26	N	Ν	Ν	N	N
27	N	Y	Ν	Y	Y
28	N	Ν	Ν	N	Y
29	N	Ν	Ν	N	Y
30	N	Ν	Ν	N	N
31	N	Ν	Y	N	N
32	N	N	N	N	N
33	N	Ν	Ν	N	N
34	N	Ν	Ν	N	Y
35	N	N	Y	N	Y
36	N	Y	Ν	Y	Y
37	N	Ν	Ν	N	Y
38	N	N	N	N	N
39	N	Ν	Y	Y	Y
40	N	N	Ŷ	N	N
41	N	N	N	N	N
42	Y	N	Y	N	N
43	N	N	Ŷ	N	N
44	N	N	Y	N	N
45	N	N	N	N	N
46	N	N	N	N	Y
47	N	Ν	Y	N	N
48	N	N	N	N	N
49	N	Ν	Y	N	Y
50	N	N	Y	Y	Y
51	Y	Ŷ	Y	N	N
52	N	N	Y	N	N
53	N	N	Y	N	N
54A	N	N	Y	Y	Y
54R	N	N	N	N	Y
55	N	N	Y	N	Ý
56	N	N	N	N	Ý
57	Y	N	Y	N	, N
58	N	N	N	N	N
59	N	N	Y	N	V
60	N	N	Y	N	, N
61	N	N	Y	N	V V
62	N	V	í V	N	N
63	N	í V	í V	N	V N

Firmness tests

	Firmness test;	seed firmness = w	ith skin; tissue	See	own	
	fir Tatal na tubana	mness = without sl	kin Tiaassa fissuuraaa	(after	Cutting & incub	ation)
	assessed for	Seed firmness	Average without	Total no. setts	% Setts with superficial and	% Setts with deep Fusarium
Seed line	firmness	skin) (Kpa)	skin) (Kpa)	assessed	deep rot	dry rot
1	10	10.44	8.70	44	0	0
2	10	10.66	8.54	50	24	0
3A	10	10.58	8.54	30	0	0
3B	10	10.42	8.39	47	4	0
4	10	10.77	9.13	18	11	0
5	10	10.96	9.18	40	0	0
0	9	10.60	8.60	30 20	5	0
8	10	10.74	9.06	30	7	0
9	8	11 19	9.16	14	14	0
10	10	10.45	8.87	40	43	3
11	8	11.25	9.59	40	5	0
12	10	11.15	8.57	40	3	0
13	8	10.55	9.09	30	3	0
14	6	11.30	8.90	14	93	86
15	10	10.21	8.34	37	8	0
16	7	11.39	8.40	20	15	0
17	8	10.61	8.40	49	4	0
18	9	10.58	8.51	48	6	0
19	10	10.79	9.40	56	5	0
20	10	10.71	8.82	20	0	0
21	8	10.51	8.93	30	0	0
22	10	9.29	8.05	50	60	32
23	10	10.12	9.32	28	43	0
25	6	10.47	8.37	5	0	0
26	10	10.54	8.35	30	17	7
27	10	11.02	8.99	46	7	0
28	6	11.18	9.43	15	13	0
29	9	10.87	9.36	45	22	0
30	10	10.93	8.68	50	2	0
31	8	10.61	9.06	20	15	0
32	10	11.10	9.51	38	8	0
33	8	10.23	8.15	20	10	5
34	10	10.35	8.78	37	3	0
36	9	10.39	0.00	39	5	0
37	10	11.07	8.91	19	10	0
38	9	10.32	8.72	20	5	0
39	9	10.57	8.68	16	25	0
40	8	10.10	8.61	29	3	0
41	10	9.46	8.31	30	7	0
42	10	10.23	8.69	78	54	4
43	9	11.11	8.60	30	0	3
44	8	9.51	7.93	14	0	0
45	10	10.05	8.00	20	0	0
46	ю́ 10	10.93	8.98	49	0	0
47	10	9.50	7.95	48	2	0
48	10	10.02	8.61	20	60	14
50	8	11 14	9.03	18	6	0
51	8	10.53	8.53	29	52	21
52	10	9.83	8.38	46	63	0
53	8	10.33	8.51	30	27	10
54A	10	10.42	8.40	48	2	2
54B	8	10.70	8.51	15	7	0
55	10	10.28	8.62	50	8	0
56	8	10.84	9.31	30	0	0
57	8	10.35	8.34	30	0	0
58	10	10.86	9.40	28	0	4
59	8 C	10.44	8.64	19	11	11
61	<u></u> б	10.01	9.29	40	15	0
62	5	10.02	9.10	9 10	0	0
63	5	11.60	9.70	10	30	0

Wound healing

Seed line	Sett 1	Sett 2	Sett 3	No. setts Rating 1	No.setts Rating 2	No. setts Rating 3	Total no. setts	Corky layer Thickness index
1	27.5	32.5	60	17	15	12	44	38
2	17.5	25	32.5	30	15	5	50	21
3A	17.5	27.5	37.5	27	1	2	30	19
3B	30	27.5	50	12	29	8	47	32
4	35	27.5	37.5	4	12	2	18	30
5	32.5	57.5	57.5	25	10	5	40	42
6	20	22.5	35	32	6	0	38	20
7	22.5	27.5	30	16	9	4	29	25
8	22.5	27.5	50	13	14	3	30	28
9	17.5	25	42.5	5	5	4	14	27
10	22.5	27.5	35	34	12	4	40	25
11	20	30	37.5	25	14	1	40	24
12	20	27.5	30	25	14	1	40	23
13	17.5	35	25	15	13	2	30	26
14	20	30	37.5	2	8	4	14	31
15	22.5	32.5	30 22 F	29	0	0	37	20
10	20	32.5	32.5	26	9	3	20	20
18	15	25	45	35	11	1	48	18
19	22.5	35	47.5	37	17	4	56	28
20	22.5	22.5	42.5	24	5	0	20	23
21	17.5	22.5	45	14	13	3	30	22
22	25	47.5	57.5	1	9	10	20	51
23	15	42.5	35	23	17	10	50	28
24	42.5	32.5	32.5	0	18	10	28	33
25	20	27.5	25	1	4	0	5	26
26	27.5	32.5	42.5	15	11	4	30	31
27	15	35	27.5	32	18	1	46	22
28	22.5	30	32.5	8	7	0	15	26
29	20	35	42.5	37	6	2	45	23
30	20	27.5	42.5	41	7	1	50	22
31	25	30	37.5	10	10	0	20	28
32	25	35	25	17	18	3	38	30
34	22.0	20	20	13	23	2	20	23
35	25	30	30	23	15	1	39	21
36	22.5	42.5	35	9	11	0	20	34
37	25	27.5	37.5	13	5	0	19	26
38	12.5	17.5	30	15	5	0	20	14
39	20	30	30	8	7	0	16	25
40	25	40	37.5	11	16	2	29	34
41	30	30	32.5	13	15	2	30	30
42	15	35	32.5	11	26	2	78	29
43	22.5	27.5	32.5	15	15	0	30	25
44	17.5	22.5	27.5	14	0	0	14	18
45	27.5	22.5	42.5	19	1	0	20	27
40	17.5	∠5 25	37.5	21	21	2	49	21
47	22.5	<u>∠</u> 5 30	20 27 5	4 <u>/</u>	0	0	4ð 20	23
40 40	30	20 5	37.5	20	a 11	0		30 29
50	25	25	32.5	6	12	0	18	25
51	25	25	50	11	15	3	29	28
52	22.5	25	30	24	21	1	46	24
53	22.5	22.5	50	9	14	3	30	26
54A	27.5	37.5	37.5	10	31	7	48	35
54B	17.5	27.5	25	14	1	0	15	18
55	25	35	37.5	31	17	2	50	29
56	15	37.5	30	19	10	0	30	23
57	25	22.5	42.5	21	9	0	30	24
58	35	30	35	13	7	0	28	33
59	30	25	32.5	4	9	5	19	28
60	20	25	35	23	17	0	40	22
61	22.5	25	25	8	1	0	9	23
62	20	27.5	37.5	9	9	1	19	24
1 0.3	/0						10	70

Physiological age and stem cankers

				Sprouting capacity	Average sprout		%
Cood line	No. tubers	Total sprout	Total tuber	(sprout wt/tuber wt)	weight per	No. sprouts	Rhizoctonia
Seed line	assessed	weight (g)	weight (g)	(%)	sprout	per tuber	stem cankers
2	10	100	1044	7.0	2.1	5.7	0
2	10	150	1674	0.0	2.2	0.0	0
38	10	74	868	9.2	2.7	0.4	0
35	10	101	1576	0.0	1.0	9.4	0
- 4	10	151	1570	10.3	3.5	5.0	0
6	10	248	1697	14.7	2.7	9.3	0
7	10	140	1800	7.9	1.9	7.6	0
8	10	80	1/08	6.0	1.0	1.0	0
9	*	09	1490	0.0	1.0	4.5	0
10	10	180	1634	11.6	21	8.0	20
11	10	97	1683	5.8	17	6.2	0
12	10	140	1531	9.0	4.3	4.1	0
12	10	274	17/18	15.7	4.0	6.2	20
14	*	214	1740	10.7	7.7	0.2	20
15	10	267	1684	15.9	29	9.2	0
16	10	220	1820	12.1	2.5	8.4	0
17	10	307	2040	15.0	3.5	89	0
18	10	194	1766	11.0	3.7	5.9	0
19	10	203	1277	15.9	4.2	4.8	20
20	10	121	1077	11.2	2.5	6.1	0
21	10	237	1864	12.7	2.8	8.4	0
22	10	161	1129	14.3	3.2	51	0
23	10	183	788	23.2	3.1	6.7	0
24	10	192	1892	10.1	3.3	5.8	0
25	*						-
26	10	406	1754	23.2	4.7	8.7	0
27	10	113	1391	8.1	1.9	6.6	22
28	*						
29	10	140	1460	9.6	3.7	3.8	10
30	10	64	1447	4.4	0.7	9.6	0
31	10	181	1983	9.1	2.8	6.5	0
32	10	160	1620	9.9	2.8	5.8	10
33	10	165	1564	10.5	2.1	7.7	50
34	10	189	1497	12.7	2.8	6.8	0
35	10	111	1509	7.3	2.1	7.6	0
36	10	224	1731	13.0	2.8	8.1	30
37	10	231	1794	12.9	3.7	6.2	20
38	10	142	1080	13.1	2.7	5.2	0
39	10	67	1424	4.7	1.0	6.7	0
40	10	298	1895	15.7	4.5	6.6	0
41	10	286	1752	16.3	4.3	6.7	0
42	10	220	1900	11.6	2.3	9.7	0
43	10	176	1412	12.5	3.1	5.7	0
44	10	416	1847	22.5	4.6	9.0	0
45	10	69	1011	6.8	1.3	5.5	0
46	10	269	1945	13.8	4.3	6.2	0
47	10	156	1334	11.7	2.6	6.0	0
48	10	100	1171	8.6	2.4	5.3	0
49	10	209	1566	13.3	2.8	7.5	20
50	10	200	1860	10.8	2.0	10.2	30
51	10	205	1920.8	10.7	3.4	6.7	0
52	10	140	1300	10.8	2.8	5.6	22
53	10	260	2020	12.9	2.8	9.4	0
54A	10	160	1960	8.2	2.5	6.5	0
54B	5	140	960	14.6	3.4	8.2	0
55	10	171	1280	13.4	3.3	5.2	0
56	10	260	2200	11.8	2.0	12.8	10
57	10	220	2240	9.8	2.2	10.0	0
58	10	100	1840	5.4	1.0	10.1	0
59	10	180	1800	10.0	2.3	8.8	11
60	10	160	1560	10.3	2.6	6.1	20

* not tested

Seed line	No. tubers for specific gravity	Average dry weight g/tuber	Specific Gravity	% Dry Matter	% Black scurf on seed
1	10	142.0	1.061	16.2	0
2	10	138.6	1.103	24.8	0
3A	10	120.1	1.116	27.6	0
3B	10	146.6	1.111	26.5	60
4	9	153.4	1.128	30.1	0
5	10	115.1	1.137	32.0	0
6	10	143.2	1.119	28.2	0
7	10	144.6	1 126	29.7	0
8	10	132.4	1 133	31.0	0
9	8	156.4	1 132	30.9	0
10	10	151.9	1 100	24.2	20
11	8	191.1	1 122	28.8	0
12	10	131.3	1 104	25.2	13
13	8	164.3	1 126	29.7	10
14	6	218.2	1 127	29.8	0
15	11	123.5	1.127	23.0	0
16	7	164.9	1.102	28.7	0
17	8	162.9	1.121	20.7	0
18	Q	140 9	1 114	27.2	0
10	10	102 /	1.003	27.2	20
20	10	102.4	1 120	30.2	0
20	р р	170.5	1.129	24.2	0
21	10	119.5	1.100	24.3	20
22	10	77.0	1.11/	21.0	11
23	10	162.2	1.090	23.4	10
24	10	102.2	1.000	21.3	10
20	10	207.0	1.093	22.0	0
20	10	117.5	1.093	22.0	0
27	12	105.9	1.114	21.2	09
20	7	179.3	1.096	23.0	0
29	9	104.0	1.102	24.7	30
30	10	122.1	1.104	25.1	20
31	8	146.5	1.114	27.2	0
32	10	132.3	1.111	20.5	0
33	8	174.6	1.102	24.6	30
34	10	124.8	1.109	26.2	20
35	9	170.3	1.110	26.4	0
36	9	121.4	1.120	28.4	20
37	10	160.2	1.119	28.2	30
38	9	135.8	1.126	29.7	0
39	9	136.7	1.128	30.2	20
40	8	172.0	1.121	28.7	0
41	10	175.2	1.104	25.1	0
42	10	160.5	1.115	27.5	0
43	9	119.7	1.138	32.3	0
44	8	1/1.1	1.113	27.0	0
45	10	103.8	1.139	32.5	0
46	6	248.5	1.123	29.0	20
47	11	123.7	1.138	32.2	0
48	9	129.9	1.142	32.9	0
49	10	143.6	1.141	32.7	10
50	8	199.1	1.119	28.1	30
51	8	145.8	1.134	31.4	0
52	10	127.4	1.141	32.7	0
53	8	195.9	1.154	35.5	0
54A	10	182.8	1.140	32.5	10
54B	8	131.6	1.166	38.0	0
55	10	122.8	1.134	31.3	0
56	8	1/6.9	1.125	29.4	10
57	8	140.0	1.180	40.9	0
58	8	161.4	1.163	37.4	0
59	8	1/9.4	1.141	32.7	0
60	9	143.1	1.158	36.4	0
61	6	181.3	1.101	24.5	-
62	8	169.0	1.087	21.5	
63	1 8	252.1	1.103	24.8	-

Specific gravity, dry matter and black scurf incidence

Appendix iii – Analytical test data

Sap analysis of seed tubers for plant nutrients

Seed line	NO ₃	Р	к	Са	Mg	Zn	в	S	Cu	Fe	Mn
1	326	135.95	5120	141.28	296.75	3.78	2.66	330.31	1.27	3.63	2.45
2	313	151.15	5240	97.99	270.55	3.67	3.06	351.55	1.30	4.13	2.08
3A	334	117.80	5320	110.13	315.27	3.61	2.23	309.10	0.80	2.32	2.22
3B	247	170.00	4880	138.02	290.58	5.73	3.34	436.20	1.70	5.35	2.55
4	249	153.25	5140	126.59	272.59	3.74	2.26	377.09	1.03	2.33	1.63
5	200	130.00	5120	130.07	200.70	4.00	3.13	305.06	0.50	2.10	1.74
7	231	124.36	5910	92.23 104.04	310 15	4.03	3.85	270.87	1 26	2.03	2.25
8	225	156 68	5930	118 52	297.34	3.84	3.68	343 78	1.20	2.07	2.20
9	261	112.76	6250	128.34	333.09	5.16	2.08	342.51	1.04	2.96	1.72
10	230	107.31	6050	94.37	354.32	3.31	2.30	304.92	0.97	3.31	2.03
11	232	182.50	6220	88.76	311.57	4.44	3.78	357.89	2.40	5.45	2.71
12	220	498.62	5720	86.41	252.62	4.64	2.19	360.18	0.90	2.25	1.77
13	211	138.60	6300	81.71	414.93	4.43	4.21	266.56	1.55	2.95	2.47
14	200	152.75	6660	97.66	322.53	4.72	3.73	329.49	3.05	3.10	2.09
15	240	174.42	6170	79.92	298.35	4.41	4.24	397.71	1.55	2.19	2.89
10	210	138.60	5880 6270	70.85	275.43	4.10	4.17	298.09	2.34	3.07	2.05
17	214	172 04	6150	83 38	315.89	3.94	2.92 4 77	309.50	1.53	2.21	1.90
19	252	150.93	5950	85 10	302.48	3 58	N/A	N/A	1.80	7 50	2.66
20	207	141.02	6080	59.67	317.23	3.55	2.78	303.98	1.49	4.60	2.38
21	182	161.64	6370	94.81	286.93	5.21	4.34	339.50	1.90	6.10	1.94
22	183	214.12	5880	92.75	222.62	3.76	3.23	322.79	0.93	4.07	1.87
23	414	191.72	5790	79.06	302.22	4.55	3.71	263.01	0.46	5.15	3.64
24	163	168.53	6100	98.47	295.21	4.78	3.77	274.57	1.80	3.55	2.00
25	190	152.38	5740	78.33	338.91	5.44	3.78	265.13	1.40	4.50	2.65
26	176	155.68	4870	76.65	258.08	4.48	3.59	355.62	1.40	3.80	1.78
27	180	157.89	5150	86.85	312.49	3.88	4.11	342.61	1.11	2.11	2.08
20	163	181 27	4230	90.04 89.88	293.62	3.90	4.00	339.50	0.51	2.00	2.37
30	145	164 68	4260	78.89	203.30	4 11	4 22	332 44	0.70	3.74	1.97
31	163	133.15	5900	86.82	360.82	3.31	2.14	297.26	0.95	3.20	1.93
32	144	141.02	5790	80.72	314.46	3.99	2.63	366.06	1.06	1.88	1.86
33	222	192.58	4420	93.74	294.41	4.85	4.34	394.81	0.73	2.33	1.61
34	187	145.93	5290	77.32	269.63	4.71	5.08	345.77	0.66	2.31	1.69
35	195	182.09	4710	75.77	257.20	3.49	4.13	330.47	0.73	3.18	1.57
36	228	137.22	3690	68.99	178.51	3.49	2.34	293.41	1.50	3.75	1.53
37	275	159.31	4690	95.85	260.04	4.14	2.83	315.42	1.00	3.10	1.75
38	329	184.93	4000	121.48	237.85	3.91	2.34	320.97	0.80	3.18	2.06
	241	138.93	4010	96.99	242.50	4.13	2.00	276.65	0.80	2.82	2.00
41	264	184.09	4840	109.27	282.25	5.00	2.66	318.24	0.73	0.99	2.35
42	295	162.31	4770	117.75	262.85	5.21	2.42	337.18	2.10	1.75	2.09
43	302	165.36	4520	98.75	294.85	4.09	1.95	332.00	1.00	2.38	3.04
44	364	204.52	4160	81.68	236.12	4.54	1.88	304.54	0.28	3.36	3.23
45	245	216.68	3840	67.35	206.22	3.97	2.34	321.10	0.26	3.93	2.01
46	233	186.60	4030	94.05	261.33	4.09	1.44	337.18	1.01	3.33	1.66
47	282	194.73	4690	54.59	330.48	4.22	2.83	335.09	0.50	2.61	2.40
48	2/8	155.71	3890	72.18	231.31	4.04	1.51	314.49	1.18	3.94	1.//
50	210	132 17	4630	81.80	253.00	4 70	1.65	312 64	1.01	2.39	2.04
51	222	236.85	4330	70.81	181.01	4.30	1.73	308.10	0.31	1.61	1.20
52	282	166.51	4430	115.48	260.05	4.29	2.83	341.44	1.34	2.85	2.41
53	222	145.53	<u>421</u> 0	<u>118.9</u> 1	251.81	3.47	2.99	<u>391.</u> 33	1.30	3.91	1.57
54A	240	144.83	5210	109.97	303.63	4.42	2.18	380.01	0.74	3.22	1.66
54B	227	167.28	4390	75.87	248.78	3.83	2.11	343.60	0.51	2.80	1.54
55	282	158.93	4690	76.11	307.97	3.50	2.18	344.70	0.68	2.52	1.53
56	232	259.04	4120	87.65	137.62	4.67	1.58	269.12	0.40	2.89	0.87
5/	241	1/7.95	4610	85.13	230.27	4.64	2.99	310.81	0.42	3.13	1.83
50	244 227	205 /3	4000	86.00	203.00	4.02	2.11	314.00	0.42	2.09	1.01
60	265	228 55	4100	104 18	221 65	4,40	2.03	353 71	0.44	4,19	1.47
61	251	154.60	4090	114.54	215.08	5.25	2.72	366.24	1.01	3.61	2.53
62	205	141.05	4760	90.87	240.62	5.51	3.33	382.10	0.63	2.95	2.47
63	228	110.29	5690	134.12	292.98	4.49	2.38	399.32	0.73	1.64	2.11

Dry tissue analysis of seed tubers for plant nutrients

	Total N							Mn	Fe	Cu	Zn	Мо	В	Co
Seed line	(%)	P (%)	K (%)	S (%)	Mg (%)	Na (%)	CI (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
2	2.2	0.3	2.2	0.2	0.1	0.0	0.3	14.0	97.0	4.8	19.0	0.1	4.7 5.0	0.1
3A	2.1	0.2	2.0	0.1	0.1	0.0	0.2	11.0	63.0	3.0	14.0	0.0	4.4	0.2
3B	2.1	0.3	1.8	0.2	0.1	0.0	0.3	9.2	30.0	2.4	18.0	0.1	3.7	0.1
4	1.9	0.2	1.6	0.2	0.1	0.0	0.2	10.0	162.0	4.5	16.0	0.1	4.3	0.3
5	1.8	0.3	1.8	0.2	0.1	0.0	0.3	9.4	98.0	5.8	16.0	0.1	3.8	0.1
6	2.0	0.3	2.3	0.2	0.1	0.0	0.3	9.5	164.0	2.4	14.0	0.1	5.0	0.2
/	1.9	0.2	2.0	0.1	0.1	0.0	0.3	13.0	70.0	4.3	14.0	0.1	4.2	0.2
9	1.9	0.2	2.1	0.1	0.1	0.0	0.2	8.9	234.0	3.6	20.0	0.1	5.4	0.1
10	2.0	0.3	2.5	0.1	0.1	0.0	0.3	15.0	130.0	3.4	15.0	0.1	4.9	0.4
11	1.5	0.2	1.9	0.1	0.1	0.0	0.2	12.0	86.0	3.6	13.0	0.1	4.6	0.2
12	2.7	0.3	1.8	0.2	0.1	0.0	0.3	9.0	46.0	1.8	19.0	0.1	4.9	0.1
13	2.2	0.3	2.1	0.2	0.1	0.0	0.2	13.0	100.0	4.1	16.0	0.1	4.5	0.1
14	1.7	0.2	2.1	0.1	0.1	0.0	0.2	9.2	84.0	4.8	14.0	0.1	4.4	0.1
15	2.2	0.2	1.7	0.2	0.1	0.0	0.2	20.0	86.0	3.9	17.0	0.1	5.8	0.1
10	1.7	0.2	1.0	0.1	0.1	0.0	0.3	13.0	84.0 71.0	5.0	15.0	0.1	4.3	0.1
18	2.0	0.3	2.1	0.1	0.1	0.0	0.3	12.0	91.0	3.7	16.0	0.1	4.9	0.0
19	1.9	0.2	1.8	0.1	0.1	0.0	0.2	12.0	164.0	4.1	15.0	0.1	4.7	0.1
20	1.9	0.2	2.5	0.1	0.1	0.0	0.3	11.0	62.0	4.9	14.0	0.1	4.5	0.1
21	2.0	0.3	2.1	0.2	0.1	0.0	0.3	9.7	97.0	6.0	20.0	0.1	4.1	0.1
22	1.8	0.3	1.4	0.1	0.1	0.0	0.2	10.0	84.0	2.6	13.0	0.1	3.9	0.1
23	2.4	0.3	2.5	0.1	0.1	0.0	0.5	21.0	50.0	1.0	16.0	0.1	4.8	0.1
24	1.3	0.2	1.7	0.1	0.1	0.0	0.3	8.2	87.0	3.1	13.0	0.1	3.6	0.1
25	2.0	0.3	2.0	0.1	0.1	0.0	0.2	14.0	80.0 100.0	5.5 3.7	10.0	0.1	3.9	0.1
20	2.3	0.3	2.0	0.2	0.1	0.0	0.2	79	62.0	22	15.0	0.1	3.8	0.2
28	1.6	0.2	1.7	0.1	0.1	0.0	0.1	9.6	68.0	3.5	13.0	0.1	3.9	0.1
29	1.8	0.2	1.5	0.1	0.1	0.0	0.2	10.0	54.0	1.3	14.0	0.1	3.3	0.1
30	1.6	0.2	1.4	0.1	0.1	0.0	0.1	7.9	32.0	1.0	12.0	0.1	3.4	0.1
31	1.3	0.2	1.7	0.1	0.1	0.0	0.2	7.2	110.0	3.2	9.7	0.1	4.0	0.1
32	1.3	0.2	1.5	0.1	0.1	0.0	0.3	5.7	47.0	3.9	11.0	0.1	3.7	0.1
33	2.4	0.4	2.2	0.2	0.1	0.0	0.2	10.0	56.0	4.6	20.0	0.1	4.3	0.1
34	1.5	0.2	1.6	0.1	0.1	0.0	0.2	8.1	84.0 55.0	3.8	16.0	0.1	3.4	0.1
36	1.0	0.2	1.7	0.1	0.1	0.0	0.3	5.2	45.0	4.5	9.6	0.1	3.1	0.1
37	1.4	0.2	1.6	0.1	0.1	0.0	0.2	7.3	50.0	3.0	13.0	0.1	3.2	0.1
38	1.9	0.3	1.8	0.2	0.1	0.0	0.3	9.2	56.0	3.9	18.0	0.1	4.1	0.1
39	1.9	0.3	1.1	0.1	0.1	0.0	0.1	8.4	42.0	3.0	14.0	0.1	3.3	0.1
40	1.8	0.2	1.7	0.1	0.1	0.0	0.3	17.0	99.0	2.8	16.0	0.1	3.5	0.1
41	1.9	0.3	1.6	0.1	0.1	0.0	0.2	19.0	108.0	1.8	14.0	0.1	3.8	0.1
42	1.7	0.2	1.7	0.1	0.1	0.0	0.3	8.8	95.0	2.6	14.0	0.1	4.0	0.1
43 44	1.4	0.2	1.0	0.1	0.1	0.0	0.2	55.0	02.U 42.0	3.4 1 0	20.0	0.1	<u> </u>	0.1
45	1.9	0.3	1.6	0.1	0.1	0.0	0.3	19.0	31.0	1.0	14.0	0.1	4.1	0.2
46	1.9	0.3	1.5	0.2	0.1	0.0	0.1	9.9	90.0	3.8	14.0	0.1	3.4	0.1
47	2.3	0.2	1.9	0.1	0.1	0.0	0.3	17.0	38.0	1.6	16.0	0.1	4.6	0.2
48	2.2	0.3	1.9	0.1	0.1	0.0	0.3	9.4	55.0	5.7	15.0	0.1	3.9	0.1
49	1.5	0.2	1.7	0.1	0.1	0.0	0.4	11.0	26.0	2.7	11.0	0.1	3.5	0.1
50	1.8	0.2	1.8	0.1	0.1	0.0	0.2	7.9	50.0	4.4	16.0	0.1	3.8	0.1
51	2.4	0.3	1.8	0.2	0.1	0.1	0.7	6.3	32.0	3.0	18.0	0.4	4./	0.4
53	1.9	0.3	1.0	0.1	0.1	0.0	0.2	9.0	152.0	4.3	12.0	0.1	3.7	0.1
54A	1.0	0.2	1.0	0.2	0.1	0.0	0.1	7.5	41.0	11	12.0	0.1	3.3	0.1
54B	2.0	0.2	1.5	0.1	0.1	0.0	0.2	9.1	46.0	2.1	25.0	0.1	4.7	0.1
55	2.0	0.3	2.3	0.1	0.1	0.0	0.2	11.0	316.0	3.2	15.0	0.1	5.0	0.1
56	2.0	0.4	2.0	0.2	0.1	0.0	0.8	6.6	27.0	1.8	23.0	0.1	3.3	0.1
57	1.7	0.2	1.9	0.1	0.1	0.0	0.6	9.8	40.0	2.3	17.0	0.1	3.7	0.1
58	1.6	0.2	1.9	0.1	0.1	0.0	0.3	7.5	50.0	1.9	15.0	0.3	3.8	0.1
59	1.8	0.3	1.8	0.1	0.1	0.0	0.4	6.6	37.0	1.5	13.0	0.1	3.6	0.1
60	1.8	0.2	1.3	0.1	0.1	0.0	0.2	6.7	37.0	1.0	15.0	0.1	3.6	0.1
62	1.9	0.2	1.4	0.1	0.1	0.0	0.2	7.5	25.U 26.0	3./ 1 7	20.0 10.0	0.1	4.2	0.1
63	1.9	0.2	1.2	0.1	0.1	0.0	0.3	6.7	67.0	2,0	18.0	0,1	4,1	0.1

Appendix iv – Field data

Field performance – average of three replicate plots

Plant growth Plant emergence (8 weeks after (4 weeks after planting) planting) Harve	Harvest assessment				
Total % Plants with No. Mean Mean scab Total tub Seed line plants/plot late emergence stems/plant plant height rating yield (t/h	er % Large Specific a) tubers gravity				
1 53 48 2.8 371 1.3 69.3	48.8 1.089				
2 53 64 2.3 382 1.3 65.9	60.4 1.087				
<u>3 54 54 2.6 399 3.0 69.8</u>	56.0 1.071				
<u>4 56 15 3.5 469 1.0 75.8</u>	53.6 1.091				
<u>5 53 44 2.3 410 2.0 66.6</u>	59.0 1.084				
<u>6 54 64 2.8 365 1.3 58.4</u>	43.8 1.089				
7 53 34 2.7 382 1.0 64.0	56.1 1.091				
<u>8 55 34 2.9 414 3.3 67.8</u>	46.6 1.087				
<u>9 54 20 3.0 433 1.3 67.6</u>	44.6 1.093				
<u>10 51 55 2.7 349 3.0 58.2</u>	54.1 1.090				
<u>11 54 50 2.8 407 2.0 63.9</u>	54.4 1.089				
12 55 13 22 243 1.7 60.2 10 10 10 10 10 10 10 10 10 10 10 10 10 1	72.0 1.087				
13 51 62 2.6 354 4.0 60.0 14 55 62 6354 10 60 60.0	50.4 1.088				
14 55 30 2.8 400 3.0 66.8	51.0 1.087				
15 55 40 2.5 419 1.3 64.4	50.1 1.087				
16 59 36 3.0 415 1.0 63.2	50.2 1.087				
17 D4 J3 J.U 384 1.3 62.9	51.7 1.092				
18 50 47 2.0 388 1.0 00.7 40 57 20 20 424 2.0 64.0	53.8 1.093				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.2 1.090				
20 33 40 2.4 309 1.7 39.7 24 56 22 24 450 2.7 67.7	<u> </u>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.1 1.095				
22 49 51 2.4 557 5.0 30 30.3 23 54 32 2.6 410 1.3 687	62.1 1.090				
20 56 44 26 376 17 613	38.5 1.086				
27 30 77 2.0 570 1.1 01.3 25 40 69 23 262 20 559	53.0 1.087				
26 54 42 26 384 30 636	59.3 1.089				
27 41 54 23 341 17 600	59.2 1.086				
28 55 52 2.5 365 1.3 59.8	47.5 1.086				
	58.0 1.087				
30 54 39 2.9 427 1.7 67.7	50.1 1.089				
31 54 42 2.9 409 2.0 59.1	46.8 1.086				
32 54 39 2.7 408 1.0 62.1	47.7 1.091				
33 50 62 2.6 347 1.0 64.6	61.4 1.089				
34 55 41 2.7 404 1.0 65.8	48.4 1.089				
35 55 50 2.9 416 1.3 64.5	51.2 1.085				
36 53 33 3.2 368 2.0 63.4	46.6 1.091				
37 52 47 2.5 370 2.0 63.2	44.0 1.087				
38 55 47 2.6 409 1.3 65.9	54.6 1.091				
39 50 44 2.7 357 3.0 67.0	47.0 1.089				
40 57 39 2.3 393 1.7 64.1	49.2 1.089				
<u>41 56 36 2.7 390 1.0 55.9</u>	46.8 1.089				
<u>42</u> <u>57</u> <u>44</u> <u>2.7</u> <u>428</u> <u>1.0</u> <u>60.3</u>	45.5 1.089				
43 53 43 2.8 382 2.7 69.8	56.1 1.091				
44 55 64 2.5 368 2.3 64.0	52.8 1.088				
<u>45 59 42 2.7 412 1.0 69.2</u>	40.7 1.093				
46 54 53 2.5 400 1.3 62.4	51.0 1.088				
47 56 46 2.8 398 3.0 62.2	51.0 1.089				
48 55 30 2.9 424 4.0 68.8	50.3 1.090				
<u>49</u> <u>49</u> <u>59</u> <u>2.5</u> <u>342</u> <u>1.3</u> <u>55.2</u>	43.2 1.089				
50 54 40 3.1 385 3.7 61.4	47.8 1.088				
51 50 30 2.4 295 2.3 60.4	/1.3 1.089				
<u>52</u> 49 4/ 2.6 385 1.3 61.0					
53 57 43 3.0 382 3.0 57.0	54.4 1.087				
b/ b	54.4 1.087 51.9 1.087 45.7 1.000				
54 54 64 2.8 3/6 0.7 62.9 55 55 52 20 205 40 640	54.4 1.087 51.9 1.087 45.7 1.090 45.2 1.000				
54 54 64 2.8 376 0.7 62.9 55 55 52 3.0 385 1.0 61.6 56 52 44 3.0 366 1.0 60.1	54.4 1.087 51.9 1.087 45.7 1.090 45.3 1.090 52.7 1.096				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.4 1.087 51.9 1.087 45.7 1.090 45.3 1.090 52.7 1.086 49.8 1.091				
54 54 64 2.8 376 0.7 62.9 55 55 52 3.0 385 1.0 61.6 56 52 44 3.0 366 1.0 60.1 57 55 43 2.9 381 1.0 55.6 58 54 37 32 202 2.0 2.4	54.4 1.087 51.9 1.087 45.7 1.090 45.3 1.090 52.7 1.086 49.8 1.091 51.9 1.095				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54.4 1.087 51.9 1.087 45.7 1.090 45.3 1.090 52.7 1.086 49.8 1.091 51.9 1.085 58.7 1.082				