

Know-how for Horticulture™

Analysising imported dried horticultural products for microbiological and chemical contamination

Bruce Tomkins VIC Department of Primary Industries

Project Number: VG01085

VG01085

This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry.

The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry.

All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government.

The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests.

ISBN 0 7341 0855 9

Published and distributed by: Horticultural Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: horticulture@horticulture.com.au

© Copyright 2004

Know-how for Horticulture™

Analysing Imported Dried Horticultural Products for Microbiological and Chemical Contamination

Project No. VG01085 Horticulture Australia Limited

Janine Jaeger¹, Julia Behrsing¹, Brendan Rodoni¹, Robert Premier¹, Pei Zhang², Gavin Rose², Bruce Tomkins¹

> Department of Primary Industries Research and Development Division 1. Knoxfield 2. State Chemistry Laboratory

Horticulture Australia Project No. VG01085

Analysing Imported Dried Horticultural Products for Microbiological and Chemical Contamination

July 2003

Project Leader

Bruce Tomkins

Department of Primary Industries Research and Development Division, Knoxfield Private Bag 15 Ferntree Gully Delivery Centre, Vic, 3156 Phone: (03) 9210 9222 Fax: (03) 9800 3521 E-mail: Bruce.Tomkins@dpi.vic.gov.au

Other key personnel were: <u>Knoxfield</u> Janine Jaeger Julia Behrsing Brendan Rodoni Robert Premier

<u>State Chemistry Laboratories</u> Gavin Rose Pei Zhang

Purpose:

To conduct a preliminary survey, to provide information on the status of some imported dried horticultural products with respect to contamination with pests, diseases, viable seeds and chemical residues.

The project was funded by Horticulture Australia and the Department of Primary Industries, Victoria.

Disclaimer:

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Any recommendations contained in this publication do not necessarily represent current Horticulture Australia policy. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without first obtaining specific, independent professional advice in respect of the matters set out in this publication.

CONTENTS

1	MEDIA SUMMARY	2
2	TECHNICAL SUMMARY	3
3	INTRODUCTION	4
4	MATERIALS AND METHODS	5
4	1.1 Collection	5
4	I.2 Bacteria	5
	4.2.1 Confirmatory Tests for the Identification of Plant Pathogenic Bacteria	5
4	I.3 Fungi	6
4	I.4 Viruses	6
4	I.5 Chemical Residues	6
	4.5.1 Sample Extraction	
	4.5.2 Column Chromatography Clean-up	7
	4.5.2.1 Organochlorines and Synthetic Pyrethroids	7
	4.5.2.2 Organophosphorus and selected carbamate pesticides	
	4.5.3 Method modification for determination of pirimicarb in bamboo	
	4.6 Seed germination	
4	1.7 Extraneous material - insects and foreign seeds	
5	RESULTS	
·	5.1 Bacteria	
	5.2 Fungi	
-	5.3 Viruses	
-	5.4 Chemical Residues	
-	5.5 Seed germination	
	5.6 Extraneous material - insects and foreign seeds	
6	DISCUSSION	
, v	5.1 Bacteria	
	5.2 Fungi	
-	5.3 Viruses	
-	5.4 Chemical Residues	
-	5.5 Seed germination	
	5.6 Extraneous material - insects and foreign seeds	
	5.7 Conclusions	
7	Recommendations	
8	ACKNOWLEDGEMENTS	
9	BIBLIOGRAPHY	
10	APPENDICES	

1 MEDIA SUMMARY

Australia has been fortunate in avoiding many of the pests and diseases that cause great economic losses for horticultural producers around the world. In order to avoid these problems in Australia great care is taken, on an on-going basis, to ensure that plant material being imported into Australia does not pose a risk to our agricultural industries.

Dried horticultural products are being imported from many countries and are readily available in commercial outlets across Australia. Surprisingly, there is little information available regarding the survival of plant pathogens, insects, weeds and seed viability in dried products. There is also considerable consumer concern about chemicals in food, but there is little known about chemical residues on dried horticultural products imported into Australia.

The aim of this study was to conduct a preliminary survey to provide information on the status of some imported dried horticultural products with respect to contamination with pests, diseases, viable seeds and chemical residues.

Over 100 dried horticultural products were collected from commercial outlets across Melbourne. Selected products were subjected to tests for the presence and viability of bacteria, fungi, virus and seeds. The presence of insects, weed seeds and chemical residue levels was also checked.

Many bacteria and fungi were isolated from most products. One bacterium and one fungus were found that can cause disease in some plants. Other fungi were found that were not identified to species, but were from genera that have plant pathogenic species. The identification of a plant virus was not conclusive, but there were indications that viruses may have been present in some products. Insects were found in a few products, but they were all dead. Seed products and products containing seeds showed varying degrees of seed viability. Several products had foreign seeds in them.

It has been suggested that the introduction of exotic pests and diseases is possible through dried horticultural products. The findings from this pilot study indicate that dried horticultural products are a potential pathway for the introduction of exotic pests, diseases and weeds and that consumers may be exposed to chemical residues on these products. The risk of introducing exotic bacterial diseases and insects appears to be quite low. However, fungi viruses and weeds could be of greater concern and the issue of chemical residues needs addressing. More work is needed to properly assess these risks. To achieve this, collaboration is needed between appropriate regulatory authorities to properly plan and evaluate future studies.

2 TECHNICAL SUMMARY

The aim of this study was to conduct a preliminary survey to provide information on the status of some imported dried horticultural products with respect to contamination with pests, diseases, viable seeds, weed seeds and chemicals. There is little known about this issue and the risks associated with importing these products into Australia are poorly understood.

A total of 120 imported dried horticultural products were collected from 19 retail shops located across seven Melbourne suburbs. A selection of 100 samples were tested for bacteria, 100 for fungi and 100 for viruses and 50 samples were screened for chemical residues.

Bacteria and fungi were isolated from many products. Several of these were found to be from genera that have plant pathogenic species. Some fungi were not identified due to lack of spores on the test media. The identification of a plant virus was inconclusive. Symptoms on herbaceous indicators suggested that there may have been virus present in some products, but this could not be confirmed. Seed viability was variable, but most had some degree of germination. Foreign seeds were found in some products of which some could have been weed seeds, whilst others could have been food seeds from the place where the products were packed. Insects were found, but they were all dead. Chemical residues were found in some products, but it was difficult to interpret the significance of the detected levels of residues.

The results of this preliminary study suggest that there is some risk involved with the importation of dried horticultural products into Australia. Bacteria, fungi and possibly viruses survived the drying processes and could therefore be a means by which exotic disease could enter Australia. Seed transmitted diseases are a potential risk given the high levels of seed viability recorded during this pilot study. The generally low numbers of bacteria isolated suggest that the likelihood of exotic bacterial disease being introduced into Australia via this route is fairly low, but the likelihood of introducing fungi and viruses is of greater concern. The presence of weed seeds in some products is also a concern in that exotic weed species could be introduced. The issue of chemical residues in these products also needs addressing. Clarification of the category of food into which these products fall is needed so that there is better understanding by importers and consumers as to what levels of chemicals can be tolerated.

More work is needed to properly assess the risk of introducing pests, diseases and chemical residues in these products. To achieve this, collaboration is needed between appropriate regulatory authorities to properly plan and evaluate future studies.

3 INTRODUCTION

Australia has been fortunate in avoiding many of the pests and diseases that cause significant economic losses for horticultural producers around the world. In order to remain free from these problems in Australia great care is taken with regard to the importation of plant material into this country. There is an increasing and extensive range of dried horticultural products being imported from many countries. These products are readily available in commercial outlets across Australia. There is potential for these products to be a pathway for the introduction of exotic pests and diseases. It has been found that dried foods including herbs and spices have a high degree of contamination with human pathogens such as *Salmonella* (Bockemuhl and Wohiers, 1984). Some plant pathogens are more tolerant of dessication than many human pathogens and it is possible that these will survive transport in dried food products. However, apart from a suggestion that fungi are common in sun-dried plant material (Ekundayo, 1987), there is little information regarding survival of plant pathogens in dried products.

Seed transmission of pests and diseases is a widely recognised quarantine risk. The presence of weed seeds is also a risk, because both the weed itself and seedborne pathogens can be exotic to Australia. The viability of seeds accompanying dried horticultural products is poorly understood. Plant seeds may be part of the product (eg. chillies) or the products itself (eg. legumes and herbs / spices) or a weed seed contaminant.

There is a concern that the dried horticultural products may have chemical residues that are restricted in Australia. There is also considerable consumer concern about chemical residues in food. Tolerance levels for chemical residues vary between countries. Little is known about the presence and levels of chemical residues on dried horticultural produce imported into Australia.

The aim of this study was to conduct a preliminary survey to provide information on the status of some imported dried horticultural products with respect to contamination with pests, diseases, viable seeds and chemicals.

4 MATERIALS AND METHODS

4.1 Collection

A total of 120 dried horticultural products were collected from 19 retail shops located across seven Melbourne suburbs. A selection of 100 of these samples were tested for bacteria, fungi and viruses, but not always the same product and a selection of 50 samples were screened for chemical residues. Twenty four products with seeds were set aside for seed germination tests. All products were checked for characteristics that may indicate disease. Insects and foreign seeds were noted and collected.

4.2 Bacteria

Samples were prepared for bacterial isolation as per Australian Standard AS 17663.3-1991, Method 3.3: Examination of specific products – Dehydrated foods. Approximately 10g of the product was weighed into a sterile stomacher bag and 90 or 190mL of peptone buffer (0.1%) was added. The samples were left to rehydrate at room temperature for 15 minutes then blended for 1 minute using the stomacher. Serial dilutions were made and 0.1mL plated onto Kings B medium and/or Nutrient Agar with yeast media and incubated at 26°C for up to 2 weeks.

Bacterial colony forming units were counted for 50 of the products tested and calculated as colony forming units per gram (cfu/g). Colonies with similar morphology to target genera, including *Agrobacterium, Erwinia, Pseudomonas* and *Xanthomonas*, were isolated for further testing. Possible *Xanthomonas, Erwinia* and *Agrobacterium* spp. were transferred to Nutrient Agar and possible fluorescent *Psuedomonas* spp. to Kings B medium. These were incubated at 26°C for at least 48 hours. A gram stain was performed on colonies of interest and if this was consistent with the gram response of known pathogenic bacteria then further confirmation tests were performed.

4.2.1 Confirmatory Tests for the Identification of Plant Pathogenic Bacteria

Xanthomonas-like colonies were line streaked onto Starch, Tween and Milk agar along with a positive control and incubated at 26°C for at least 2 days. Positive reactions typical of *Xanthomonas* spp. included clearing around the streak when starch agar was flooded with iodine, a white deposit around the streak on Tween agar and clearing around the streak on Milk agar.

Erwinia-like colonies were inoculated, along with positive and negative controls, into two tubes of Oxidative - Fermentative (OF) medium, one of which was covered with sterile paraffin oil. These were incubated at 26°C for up to 1 week. Production of acid indicated by a colour change in both tubes indicated fermentative metabolism, which is positive for *Erwinia* spp. Cultures with positive fermentative metabolism were inoculated onto potato slices. Rotting of potato indicated *Erwinia* spp.

Agrobacterium-like colonies, along with a positive control were line streaked onto induction medium and incubated for 2-3 days. When grown they were spotted onto reaction medium and incubated for up to 2 days. Once a colony formed, the plate was flooded with Benedict's reagent and left for 15-30 minutes. A positive result for *Agrobacterium* spp. was indicated by the development of a yellow colouring around the colony.

Pseudomonas-like colonies were checked for fluorescence on King B medium with UV light. If fluorescent, cultures were dilution streaked onto Sucrose Nutrient Agar (SNA), inoculated

onto potato slices, inoculated into Arginine dihydrolase medium, and incubated for at least 48 hours. Positive results included levan type shiny raised colonies on SNA, rotting of potato and a colour change from yellow to purple of the Arginine dihydrolase medium. Colonies were tested for the oxidase reaction using commercially available test sticks (Oxoid) and tobacco plants were inoculated to check for hypersensitivity reaction. The resulting positive or negative reactions give a presumptive identification of the species of *Psuedomonas*.

4.3 Fungi

Moist incubation of plant material was prepared by placing pieces of product on wet paper towel in plastic containers with lids. These were incubated at room temperature until fungal growth appeared or for up to 3 months. Fungal isolation was carried out using four types of media, including malt extract agar, potato dextrose agar, rose-bengal agar and water agar. If necessary, plant material was cut into small pieces, using a sterile scalpel. The material was then steeped in hypochlorite for at least one minute to surface sterilise and then drained. Five or six pieces from each sample were pressed into the media and incubated at room temperature until fungal growth appeared or for up to 3 months. Fungi were identified by a fungal taxonomist.

4.4 Viruses

Several species of plants were grown as indicators for virus determination. These included, *Chenopodium quinoa, Nicotiana tabacum, Nicotiana glutinosa, Nicotiana rustica, Cucumis sativus* and for some products, *Physalis floridana*. Dried plant samples were macerated using a mortar and pestle with 5-10mL of 0.05M Na₂HPO₄-NaH₂PO₄, pH 7.4, buffer containing 0.1% sodium sulphite. Two leaves per indicator plant were coated with carborundum. These leaves were wiped with the prepared sample, left for 1-2 minutes and then rinsed with distilled water. Plants were observed over time for symptoms. Leaves from plants thought to have positive symptoms were sub-inoculated onto a new set of plants by macerating with buffer and applying as described above.

4.5 Chemical Residues

Fifty products were tested by Department of Primary Industries' State Chemistry Laboratories (SCL), for chemical residues including Organochlorine (OC), Organophosphorus (OP), Synthetic Pyrethroid (SP) and selected fungicides and Carbamate pesticides. The methods used were based on SCL 10062 (SCL, Sneydes Rd, Werribee, Victoria) method with the following modifications.

4.5.1 Sample Extraction

Samples were chopped into small pieces and 10g of homogenised sample weighed into a 250mL beaker and 70mL of filtered distilled water added. The samples were soaked overnight and next day, 130mL of acetone was added and blended for 5 minutes. Extract was filtered under suction through Buchner funnel fitted with a glass fibre filter paper. The filtrate was transferred into a 1L separating funnel with 650mL of 4% sodium sulphate solution added and extracted with 1×100 mL and 2×50 mL dichloromethane (DCM). The dichloromethane extract was passed through a drying column containing 30g anhydrous sodium sulphate into a 500mL flat bottom flask. The extract was concentrated and inverted into hexane on a water bath. The final extract was transferred into a 5mL measuring cylinder and made up to 5mL with hexane.

4.5.2 Column Chromatography Clean-up

4.5.2.1 Organochlorines and Synthetic Pyrethroids

A chromatographic column was prepared with 3g of 2% (w/w) deactivated Florisil[®] (magnesium-silica gel) topped with 1.5-cm anhydrous sodium sulphate and prewashed with 25mL hexane. A 0.5mL aliquot of the sample extract was loaded on the column and eluted with Eluent 1 consisting of 25mL 10% ether/hexane for organochlorides (OC) and synthetic pyrethroids (SP) except β -Endosulfan and Endosulfan or Eluent 2 consisting of 25mL 0.5% acetonitrile/49.5% hexane/50% dichloromethane. This eluent is used only for the determination of β -Endosulfan and Endosulfan sulphate.

Each eluent was collected in a Kuderna/Danish (KD) flask, concentrated and inverted into hexane to a final volume of 1mL. For OC 200µl was diluted to 1000µl and injected on a gasliquid chromatograph with electron capture detector (GLC-ECD). SP samples were injected on a GLC-ECD without further dilution.

4.5.2.2 Organophosphorus and selected carbamate pesticides

A chromatographic column was prepared with 3g of 2% (w/w) deactivated Florisil[®] as above. A 1mL aliquot of the sample extract was loaded on the column and eluted with 25mL 20% acetone/dichloromethane. The eluent was collected in a Kuderna/Danish (KD) flask, concentrated and inverted into hexane to a final volume of 1mL. OP samples were injected on a gas-liquid chromatograph with pulsed flame photometric detector (GLC-PFPD). Carbamate samples were injected on a gas-liquid chromatograph with nitrogen phosphorus detector (GLC-NPD).

4.5.3 Method modification for determination of pirimicarb in bamboo

Using the above sample extraction method for the bamboo samples resulted in low recovery for pirimicarb due to pirimicarb being highly soluble in the acidic aqueous phase and was therefore not extracted into the organic solvent. The pH was adjusted from acidic to neutral to extract pirimicarb out of the bamboo sample into the organic solvent phase.

4.6 Seed germination

Between 100 and 400 seeds, depending on size, were laid evenly on moistened paper (Grade 2H on top and Grade U5 underneath) which was placed on a moistened towel in trays and covered with lids. These were left at room temperature and examined weekly for signs of germination. Germinated seeds were removed and the remainder left for up to 4 weeks.

4.7 Extraneous material - insects and foreign seeds

Products were examined for any other extraneous materials including insects and seeds. Insects were sent to an insect taxonomist for identification. Seeds were separated and kept aside for photographing, to show the variety of foreign seeds found in the products and then set up for germination as described above.

5 RESULTS

5.1 Bacteria

Results of the 100 bacterial isolations are presented in Appendix 1. A variety of types and numbers of bacteria were isolated from all products. The number of bacteria isolated from 50 products varied from as few as one colony forming unit per gram (cfu/g) for cardamon pods, watermelon seeds, marjoram and tomatoes, to over 2000 cfu/g for mung beans and curry leaves. However, most products had less than 500 cfu/g.

Biochemical tests on some bacteria with selected colony morphologies did not confirm the presence of pathogens (Appendix 1). Others exhibited fluorescence under UV light and were therefore considered to be fluorescent *Pseudomonas* spp. Seven products had fluorescent colonies and biochemical tests were performed. Presumptive identification was established from the results of biochemical tests (Table 1).

Table 1: Presumptive identification of bacteria from the target genera that were identified from dried horticultural products.

Code	Product	Family	Genus / Species	Origin	Count cfu/g	Presumptive identification
D4/21	Dill seeds	Apiaceae	Anethum graveolens	Turkey	4	Fluorescent <i>Pseudomonas</i> , but not identified to species
S3/3	Chinese cabbage	Brassicaceae	Brassica rapa var pekinensis	China	NC	Saprophytic Pseudomonas
BR1/5	Cumin seeds	Apiaceae	Cuminum cyminum	China	55	P. marginalis P. fluorescens
BR3/2	Liquorice	Leguminosae	Glycyrrhiza glabra	Syria	34	<i>P. marginalis</i> <i>P. tolaasii</i> or a saprophyte*
D4/24	Aniseed star	Illiciaceae	Illicium anisatum	China	88	P. tolaasii or a saprophyte*
BH3/17	Black beans	Leguminosae- Papilionoideae	Phaseolus vulgaris	China	3	P. marginalis
BR3/5	Sesame seeds	Pedaliaceae	Sesamum orientale	Lebanon	1069	P. marginalis

* - *P. tolaasii* gives the same LOPAT results as some saprophytic Pseudomonads.

Results of biochemical tests on fluorescent Pseudomonads indicated that the likely species isolated were *P. fluorescens, P. tolaasii* or a saprophyte and *P. marginalis*. One isolate from dill seeds was identified as a fluorescent pseudomonad, but did not show the typical responses to the biochemical tests that would identify the species.

5.2 Fungi

A wide range of fungi was isolated from most of the 100 products tested (Appendix 1). One pathogenic fungus, *Macrophomina phaesolina* (Tassi) Goid, was identified from mung beans (D1/3) from Pakistan. The most common genera isolated included *Penicillium, Rhizopus, Aspergillus, Cladosporium* and *Chaetomium*. Other genera included *Absidia, Acremonium, Alternaria, Aureobasidium, Botrytis, Chromelosporium, Chrysonilia, Coniella, Epicoccum, Khuskia, Melanospora, Mucor, Neurospora, Nodulisporium, Papulaspora, Periconia, Phoma, Pithomyces, Sporormiella, Stachybotris, Syncephalastrum, Thielavia, Trichoderma and Ulocladium*. Several fungi could not be identified because no spores were formed. No fungi was isolated from a few products, including sweet turnip (daikon), lily flower and betel leaves.

5.3 Viruses

From the 100 products tested for viruses (Appendix 1) several induced symptoms on some of the herbaceous indicator plants (Table 2).

A range of symptoms was expressed by the herbaceous indicators in response to inoculation with sap from certain dried products including leaf necrosis and chlorosis (yellowing), deformed leaves (drooping, distorted), stunting and bronzing. It was difficult to determine if these symptoms were induced by other factors, such as water or nutritional deficiencies or high concentrations of salts and other reagents in the dried plant product.

Of particular interest were the bamboo and barwon flower samples. Four bamboo products BH2/7, BH3/10, R1/3 and S2/5 induced symptoms on cucumbers that appeared to indicate the presence of virus. The chlorosis, necrosis and stunting observed on the cucumber indicator plants after inoculation with sap from the bamboo samples, were virus-like (Table 2). Sub-inoculation of the symptomatic cucumber tissue onto young cucumber plants yielded milder symptoms. Examination of the symptomatic cucumber tissue using the electron microscope did not identify any rod shaped virus particles.

Sap from the barwon flower tissue produced chlorotic and bronzing symptoms on several tobacco indicator plants and on *Physalis floridiana*. Stunting was also observed on *N. glutinosa* (Table 2). Sub-inoculation of the symptomatic indicator tissue onto young indicator plants yielded only minor symptoms and no rod shaped virus particles were observed using the electron microscope. It is unclear whether the presence of virus in the dried bamboo and barwon flower tissue was the cause of the symptoms observed.

5.4 Chemical Residues

From the fifty products screened, chemical residues were detected in sixteen products. Chemicals found were from the organophosphate, organochloride, synthetic pyrethroid and carbamate groups.

Code						He	rbaceous In	dicators		
Code	Product	Family	Genus / Species	Origin	Chenopodium quinoa	Nicotiana tabacum	Nicotiana glutinosa	Nicotiana rustica	Cucumis sativus e abc abc e abc e abc e b b b b b - ab ab a e a -	Physalis floridana
BH1/8	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	b	-	d	d	е	d
BH2/7	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	-	-	-	-	abc	х
BH3/10	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	-	-	-	-	abc	х
R1/3	Bamboo shoots	Gramineae (Poaceae)	Bambusa	Thailand	-	-	-	-	abc	х
R2/2	Bamboo leaf	Gramineae (Poaceae)	Bambusa	Thailand	-	-	-	bd	е	-
S2/5	Bamboo shoot tip	Gramineae (Poaceae)	Bambusa	Thailand	-	-	-	-	abc	х
S1/9	Meigancai	Brassicacae (Cruciferae)	Brassica juncea	China	-	-	-	-	е	-
S1/3	Chrysanthemum	Asteraceae	Chrysanthemem coronarium	China	-	-	-	-	е	f
BR5/3	Watermelon seed	Cucurbitaceae	Citrullus lantatus	Iran	-	-	-	-	b	d
BH1/10	Lime skin	Rutaceae	Citrus aurantifolia	Thailand	b	-	-	-	b	-
BH3/2	Lime leaves	Rutaceae	Citrus aurantifolia	Thailand	b	-	-	d	-	-
BR1/5	Cumin seeds	Apiaceae	Cuminum cyminum	China	-	-	-	-	ab	b
R1/2	Lily flower	Liliacae	Hermerocallis fulva	China	-	-	-	-	а	ab
S1/5	Barwon flower	Cactaceae	Hylocereus undatus	China	b	-	е	d	е	abdf
BR5/2	Mint	Labiatae	Mentha	India	b	-	-	bd	-	-
D4/2	Curry leaves	Rutaceae	Murraya koenigii	Sri Lanka	-	-	-	d	-	-
BR4/1	Oregano bunches	Labiatae	Origanum vulgare	Greece	b	-	d	-	-	f
D1/2	Kidney beans	Leguminosae- Papilionoideae	Phaseolus vulgaris	Pakistan	е	-	-	-	-	de
BH2/8	Prunella vulgaris	Lamiacae	Prunella vulgaris	China	-	-	-	bf	-	-
BH2/6	Sweet turnip	Brassicacae (Cruciferae)	Raphanus sativus	China	-	-	-	d	ab	d
BR3/1	Sage leaves	Labiatae	Salvia	Jordan	-	-	-	ed	-	f
D4/26	Ginger roots	Zingiberaceae	Zingiber officinale	India	-	е	е	d	-	bd
S1/4	Ginger slice	Zingiberaceae	Zingiber officinale	China	-	-	-	-	-	d

Table 2: Virus-like symptoms observed on herbaceous indicators inoculated with dried horticultural products.

a= necrosis

b= chlorosis c= drooping leaves d= deformed leaves e= stunted f= bronzing x= not tested

5.5 Seed germination

There were several products that were seeds or contained seeds. Nearly all the seeds tested showed some degree of germination (Table 4). The percentage that germinated varied from 0.5% to 95%. Only four out of the 25 products tested showed no germination.

Code	Product	Family	Genus	Origin	% germinated
D4/21	Dill seeds	Apiaceae	Anethum graveolens	Turkey	15.5
BH3/6	Chillies	Solanaceae	Capsicum annuum	China	75.5
D4/14	Chillies	Solanaceae	Capsicum annuum	India	0.5
D4/15	Chillies	Solanaceae	Capsicum annuum	India	78.5
S3/4	Chillies	Solanaceae	Capsicum annuum	Thailand	9
D4/22	Papita seeds	Caricaceae	Carica papaya	China	0
BR5/3	Watermelon seed	Cucurbitaceae	Citrullus lantatus	Iran	0
KC/1	Cumin seeds	Apiaceae	Cuminum cyminum	India	20
BR1/6	Brown cardamon pods	Zingiberaceae	Elettaria cardamonum	India	0.5
BR1/3	Cardamon seeds	Zingiberaceae	Elettaria cardamonum	PNG	0.5
BR1/4	Cardamon pods	Zingiberaceae	Elettaria cardamonum	Guatemala	0.5
BR3/4	Fennel seeds	Apiaceae	Foeniculum vulgare	Lebanon	75.5
D4/23	Fennel seeds	Apiaceae	Foeniculum vulgare	India	80.3
D4/24	Aniseed star	Illiciaceae	Illicium anisatum	China	1
BR1/7	Star anise	Illiciaceae	Illicium anisatum	Iran	0
BR2/1	Tomatoes	Solanaceae	Lycopersicon esculentum	Italy	28.5
D4/12	Tomatoes	Solanaceae	Lycopersicon esculentum	Turkey	30.5
D2/1	Poppy seeds	Papaveraceae	Papaver somniferum	Poland	52.5
BH3/17	Black beans	Leguminosae- Papilionoideae	Phaseolus vulgaris	China	48
D1/2	Kidney beans	Leguminosae- Papilionoideae	Phaseolus vulgaris	Pakistan	23
BH2/8	Prunella vulgaris (self heal)	Lamiacae	Prunella vulgaris	China	0
D4/6	Senna pods	Fabaceae	Senna	India	22.5
BR3/5	Sesame seeds	Pedaliaceae	Sesamum orientale	Lebanon	0.5
D1/3	Mung beans	Leguminosae- Papilionoideae	Vigna radiata	Pakistan	95
D4/19	Horse gram	Leguminosae- Papilionoideae	Vigna unguiculata	Sri Lanka	68.3

Table 4: The percentage of seeds germinated from dried horticultural products.

5.6 Extraneous material - insects and foreign seeds

The remains of several insects were found in several products (Table 5). No live insects were found in any of the products. Several products, especially seed products, contained foreign seeds. Examples of seeds found are shown in Figures 1 - 9. Some of the foreign seeds were tested for germination and some of the seeds were found to be viable (Table 6).

able 5. I	Annopous	s iouna in ari		ai piùu	
Code	Product	Family	Genus	Origin	Insect
BH1/11	Orange peel	Rutaceae	Citrus sinensis	China	Part of pyralid larva, possibly <i>Plodia</i> sp.
BH3/3	Tangerine peel	Rutaceae	Citrus tangerina	China	Shed skin of a spider Forewing of a beetle, possibly Dermestidae Fragment of a beetle larva, possibly Dermestidae Few incomplete book lice, Psocidae
S3/2	Snake beans		Vigna sesquipedalis	China	Three larvae of Bean pod borer moth, Maruca vitrata

Table 5: Arthropods found in dried horticultural products.

Table 6: Germination of foreign seeds.

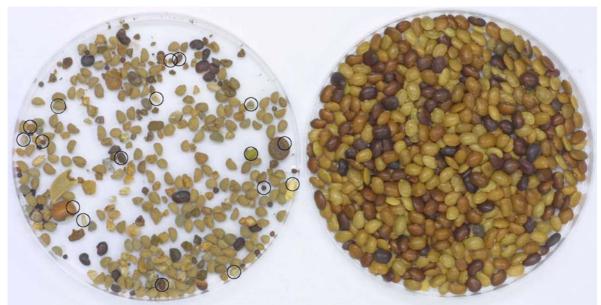

Code	Product	Family	Genus	Origin	Observations
BR1/5	Cumin seeds	Apiaceae	Cuminum cyminum	China	33 out of 76 seeds germinated. 6/14 seed types had some degree of germination.
KC/1	Cumin seeds	Apiaceae	Cuminum cyminum	India	24/76 seeds germinated. 8/17 seed types had some degree of germination.
D4/19	Horse gram	Leguminosae- Papilionoideae	Vigna unguiculata	Sri Lanka	30/69 seeds germinated. 5/17 seed types had some degree of germination.
D 4/23	Fennel seeds	Apiaceae	Foeniculum vulgare	India	14/82 seeds germinated. 7/17 seed types had some degree of germination.
D4/21	Dill seeds	Apiaceae	Anethum graveolens	Turkey	4/16 seeds germinated. 2/10 seed types had some degree of germination.
D2/1	Poppy seeds	Papaveraceae	Papaver somniferum	Poland	4/44 seeds germinated. 1/4 seed types had some degree of germination.
BR3/4	Fennel seeds	Apiaceae	Foeniculum vulgare	Lebanon	4/12 seeds germinated. 3/6 seed types had some degree of germination.
BR3/5	Sesame seeds	Pedaliaceae	Sesamum orientale	Lebanon	No germination from 4 seeds.
D3/1	Camomile	Compositae	Chamaemelum nobile	Yugoslavia	No germination from the seeds in the pods.

Figure 1: Foreign seeds (L) found in product BR1/5 cumin seeds (R) from China. The circles indicate the different types of foreign seeds found.

Figure 2: Foreign seeds (L) found in product KC/1 cumin seeds (R) from India. The circles indicate the different types of foreign seeds found.

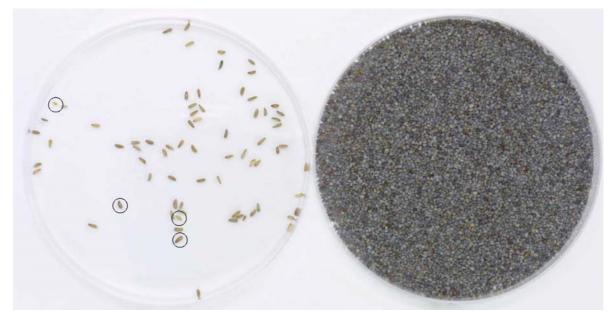

Figure 3: Foreign seeds (L) found in product D4/19 horse gram (R) from Sri Lanka. The circles indicate the different types of foreign seeds found.

Figure 4: Foreign seeds (L) found in product D4/23 fennel seeds (R) from India. The circles indicate the different types of foreign seeds found.

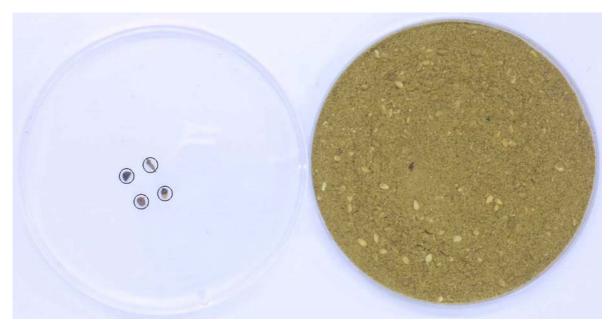

Figure 5: Foreign seeds (L) found in product D4/21 dill seeds (R) from Turkey. The circles indicate the different types of foreign seeds found.

Figure 6: Foreign seeds (L) found in product D2/1 poppy seeds (R) from Poland. The circles indicate the different types of foreign seeds found.

Figure 7: Foreign seeds (L) found in product BR3/4 fennel seeds (R) from Lebanon. The circles indicate the different types of foreign seeds found.

Figure 8: Foreign seeds (L) found in product BR3/5 sesame seeds (R) from Lebanon. The circles indicate the different types of foreign seeds found.

Figure 9: Foreign seed pods (L) found in product D3/1 camomile (R) from Yugoslavia. Each pod contained many tiny seeds.

6 DISCUSSION

6.1 Bacteria

Determining the presence of pathogenic bacteria was difficult, because of limited resources. Therefore, an attempt was made to determine the presence of common genera that have pathogenic species. As a result, some pathogenic isolates may not have been detected and it is these that may be of concern. Many more resources would have been required to identify every colony isolated. Of the bacteria isolated, *P. fluorescens* is saprophytic, but *P. marginalis* and *P. tolaasii* are pathogenic to many agricultural hosts and mushrooms, respectively (Bradbury, 1986). The low numbers of bacteria isolated and the absence of many common pathogenic genera suggests that the risk of introducing exotic bacterial pathogens on dried horticultural products is quite low. However, bacteria were consistently isolated from the dried horticultural products which indicates that the introduction of exotic bacterial pathogens into Australia via dried horticultural products is possible.

6.2 Fungi

There were many fungal species isolated from the dried horticultural products, most of which are saprophytic and found in soil. *Macrophomina phaesolina* causes charcoal rot and ashy stem blight on legumes, jute, potato, cotton, peanut and conifers (Holliday and Punithalingam, 1970). This fungus is usually transmitted via plant debris in the soil and may also be seed-borne in some crops. This is of concern since it was isolated from a seed product that had a high germination rate. Other genera were isolated that have pathogenic species of which some are exotic to Australia. These include *Alternaria, Aspergillus, Cladosporium, Penicillium, Periconia*, and *Phoma*.

Fungi are generally well equipped to survive the drying processes used to produce the products from which they were isolated. The wide variety of fungi isolated, including those

that could not be identified suggest that dried horticultural products could be a means by which exotic fungi or new strains of existing fungi could be introduced into Australia. The right conditions in a backyard compost heap or people planting the seeds could lead to infected seeds like mung beans growing and pathogens like *M. phaesolina* spreading. The fact that the mung beans exhibited a 95% germination rate and this fungus can be seed transmitted, increases the chances of spread. Even though this fungus is found in Australia, it clearly demonstrates that new pathogenic and exotic strains of fungi could be introduced via this route.

6.3 Viruses

The aim of our studies was to screen 100 samples of dried horticultural products for the presence of viable virus particles, as measured by infectivity. Mechanical inoculation of sap from test plant tissue onto sensitive indicator plants is one of the most basic means for detecting the presence of plant viruses and is extremely useful in studies such as this when confronted with a wide range of botanically diverse samples. A major drawback of this approach is that the test result indicates only the presence of plant viruses and does not definitively identify a specific virus. A second drawback is that the symptoms expressed on virus infected indicator plants can sometimes be caused by other factors such as nutritional or chemical imbalances. During the experiments conducted in this study a number of *Physalis floridiana* indicator plants were affected by a chemical spray and therefore any symptoms observed on these plants had to be ignored.

Many viruses will loose their infectivity during the processing of dried plant tissue. However, a number of viruses will survive in dried tissue for many years, particularly those viruses belonging to the Tobamovirus (*Tobacco mosaic virus*) and Potexvirus (*Potato virus X*) groups. Some of these viruses (ie. *Pepino mosaic potexvirus*) do pose a quarantine risk to Australia. With these points in mind, our screening of 100 samples suggests that some of the samples of dried plant tissue may have been infected with a plant virus. Of particular interest were the bamboo and barwon flower samples. Further work is required to verify the presence of virus in these samples.

6.4 Chemical Residues

Although chemical residues were detected in a number of samples, it is not possible to properly interpret the data and make recommendations. The aim of this study was to do a preliminary investigation to see whether chemicals were present. Samples were not collected according to internationally agreed protocols so any interpretation against the Food Standards Code would not be legitimate. The information would need to be examined by the appropriate national and state authorities to determine what further work, if any, needs to be done.

6.5 Seed germination

The number of seeds that germinated varied greatly both between and within plant species. The results show that the growth of seeds that may be harbouring fungal, bacterial or viral pathogens is possible from dried horticultural products whether they are seed products or within products such as dried chillies and tomatoes. *Macrophomina phaesolina* in mung beans is an example of a seed borne pathogen that was found in a seed product. There is also a range of seed borne diseases that could be transmitted by the viable seeds that were present in the dried horticultural products.

6.6 Extraneous material - insects and foreign seeds

It is encouraging that no live insects were found in any of the dried horticultural products assessed and only three products showed evidence that insects had been present in the products. The risk of insect transmission by these products appears to be unlikely.

The presence of so many foreign seeds in some of the products is cause for concern. Some of the foreign seeds appeared to be other food seeds such as chickpeas and sesame seeds and these may have been introduced when the product was packaged, in either Australia or the exporting country. There were other seeds detected that are likely to be weed seeds. The foreign seeds that germinated suggest that given the right conditions exotic weed species could be introduced into Australia via dried seed products. Further work is needed to assess the risk of importing noxious weeds into Australia in dried horticultural products.

From the results of this study of bacteria, fungi, viruses and seeds, we believe that it is possible for exotic diseases to be introduced into Australia via imported dried products. A possible route could be if products were disposed of in the backyard compost. Elimination of pathogens is possible in compost piles set up to achieve optimum temperatures and that are properly turned (Wijnen *et al.*, 1983). However, most backyard compost piles do not achieve this. Ryckerboer, Cops and Coosemans (2002), found that backyard composting was only effective in eliminating tobacco mosaic virus and only partly successful in eliminating the nematode, *Heterodera schachtii* and tomato seeds. Composting was also found to be unsuccessful in eliminating the fungus *Plasmodiophora brassicae*. Another route could be if seed products were grown in backyards or on commercial properties.

6.7 Conclusions

This project was conducted in response to the suggestion that exotic pests and diseases could be introduced into Australia on dried horticultural products. A possible route could be if products were disposed of in the backyard compost or if seed products are grown in backyards or on commercial properties. This study has shown the potential for pathogenic bacteria, fungi and viruses and exotic weeds to be introduced in dried products. However, the study was intended to only be preliminary and the small sample size makes results difficult to interpret. More work that targets specific problems is needed to properly assess the risk of introducing exotic diseases. To achieve this, collaboration is needed between appropriate regulatory authorities to properly plan and evaluate future studies.

7 Recommendations

• AQIS, Plant Health Australia and state regulatory bodies need to be notified of the results of this pilot study.

• Future work, particularly the issue of chemical contaminants, needs to be carefully planned and interpreted. The information gathered here needs to be examined by the appropriate national and state authorities to determine what further work, if any, needs to be done.

• Clarification of food standards for dried horticultural products is required.

• More extensive studies including reviews need to be supported that target specific pests / pathogens / weeds. For example, seed borne diseases in pulses, Solanaceous species and noxious weeds.

• This study was a pilot study and should not be used as a basis for conclusion on risks associated with imported dried produce. It should however, be made available to government agencies which have a mandate for regulating imports.

8 ACKNOWLEDGEMENTS

Francha Horlock Mali Malipatil James Cunnington Ian Pascoe Sohir Salib Jing Ye Zhang

9 **BIBLIOGRAPHY**

Bockemuhl, J. and Wohiers, B., 1984. The problem of Salmonella contamination of untreated dried food products. Zentalblatt-fur-Bakteriologie, Mikrobiologie and Hygiene, 178:5-6, 535-541.

Bradbury, J.F., 1986. Guide to Plant Pathogenic Bacteria. CAB International, Surrey.

- Ekundayo, C.A., 1987. Mycoflora and vitamin content of sundried food in Nigeria. Plant Foods for Human Nutrition, 37:247-252.
- Holliday, P. and E. Punithalingam, 1970. CMI Pathogenic Fungi and Bacteria No. 275. Commonwealth Agricultural Bureaux, Commonwealth Mycological Institute, Surrey.
- Ryckeboer, J., S. Cops and J. Coosemans, 2002. The Fate of Plant Pathogens and Seeds During Backyard Composting of Vegetable, Fruit and Garden Wastes. H. Insam, N. Riddech, S. Klammer (Eds), Microbiology of Composting, Springer-Verlag, Berlin, Heidelberg.
- Wijnen, A.P., D. Volker and G.J. Bollen, 1983. De Lotgevallen van pathogene schimmels in een composthoop. Gewasbescherming 14:5.

10 APPENDICES

Appendix 1: Bacteria, fungi and virus isolated from dried horticultural products.

Sample						Bacteri	а		Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
BH2/10	Wu hua cha (5 flowers tea)			China	NC	CNT		Aspergillus, Rhizopus, Syncephalastrum	-
BH3/4	Mushroom			China	NC	CNT		Rhizopus, Tricoderma, Penicillium, Chaetomium	x
D4/1	Onion flakes	Alliaceae	Allium cepa	India	367	CNT		Rhizopus, Chaetomium, Penicillium, Aspergillus, unidentified fungi	-
S2/6	Galangal	Zingiberaceae	Alpinia galanga	Thailand	NC	CNT		Rhizopus, Penicillium	-
D4/21	Dill seeds	Apiaceae	Anethum graveolens	Turkey	4	Pseudomonas	Fluorescent Pseudomonas, but not identified to species	<i>Chaetomium,</i> <i>Cladosporium,</i> unidentified fungi	-
D4/20	Celery seeds	Apiaceae	Apium graveolens	Turkey	98	Erwinia	Not Erwinia	Rhizopus, Cladosporium, Chromelosporium,	-
BH1/12	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	NC	CNT		<i>Cladosporium,</i> <i>Penicillium,</i> unidentified fungi	-
BH1/13	Bamboo shoot strip	Gramineae (Poaceae)	Bambusa	China	х			x	-
BH1/3	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	х			x	-
BH1/8	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	NC	CNT		Penicillium	?
BH2/7	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	NC	CNT		Cladosporium, Penicillium	?
BH3/10	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	х			x	?
BH3/11	Bamboo shoot tips	Gramineae (Poaceae)	Bambusa	China	х			x	-
BH3/12	Bamboo shoot tips	Gramineae (Poaceae)	Bambusa	Vietnam	NC	CNT		Cladosporium,	-

Sample						Bacteri	а		Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
BH3/13	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	х			x	-
BH3/9	Bamboo shoots	Gramineae (Poaceae)	Bambusa	China	x			x	-
R1/3	Bamboo shoots	Gramineae (Poaceae)	Bambusa	Thailand	NC	CNT		Penicillium, Rhizopus, Cladosporium, unidentified fungi	?
R2/2	Bamboo leaf	Gramineae (Poaceae)	Bambusa	Thailand	NC	CNT		Penicillium	?
S1/8	Bamboo	Gramineae (Poaceae)	Bambusa	China	x			x	-
S2/4	Bamboo shoots	Gramineae (Poaceae)	Bambusa	Vietnam	NC	CNT		Cladosporium, unidentified fungi	-
S2/5	Bamboo shoot tip	Gramineae (Poaceae)	Bambusa	Thailand	NC	CNT		<i>Rhizopus,</i> unidentified fungi	?
BH2/4	Mustard green	Brassicacae (Cruciferae)	Brassica juncea	China	NC	CNT		Aspergillus, Rhizopus, Penicillium, Aureobasidium	-
R2/1	Preserved mustard green	Brassicacae (Cruciferae)	Brassica juncea	China	NC	Erwinia	Not <i>Erwinia</i>	Aspergillus	_
S1/9	Meigancai	Brassicacae (Cruciferae)	Brassica juncea	China	NC	CNT		<i>Penicillium,</i> <i>Cladosporium,</i> unidentified fungi	?
S3/3	Chinese cabbage	Brassicaceae	Brassica rapa var pekinensis	China	NC	Pseudomonas, Erwinia, Agrobacterium	Saprophytic Pseudomonas, not Erwinia, not Agrobacterium	Mucor, Penicillium, Rhizopus	-
BH1/4	Cole (bok choi)	Brassicacae (Cruciferae)	Brassica rapa var chinesis	China	NC	CNT		Rhizopus, Penicillium, Cladosporium, unidentified fungi	-
BH2/3	Cole (bok choi)	Brassicacae (Cruciferae)	Brassica rapa var chinesis	China	NC	CNT		Penicillium, Aspergillus, Cladosporium, Epicoccum	_
BH1/1	Chillies	Solanaceae	Capsicum annuum	China	NC	Xanthamonas, <i>Erwinia</i> , Agrobactium	Not Xanthomonas, not Erwinia, not Agrobacterium		-

Sample						Bacteri	а		Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
BH3/5	Chillies	Solanaceae	Capsicum annuum	China	NC	Xanthamonas, <i>Erwinia</i>	Not Xanthomonas, not Erwinia	Rhizopus, Chaetomium, unidentified fungi	-
BH3/6	Chillies	Solanaceae	Capsicum annuum	China	NC	CNT		Rhizopus, Penicillium, Aspergillus, Chaetomium, unidentified fungi	-
BH3/7	Chillies	Solanaceae	Capsicum annuum	China	NC	CNT		Rhizopus, Penicillium, Chaetomium, Cladosporium	-
BH3/8	Chillies	Solanaceae	Capsicum annuum	Thailand	NC	CNT		Penicillium, Cladosporium	-
BR1/1	Chillies	Solanaceae	Capsicum annuum	India	178	CNT		Cladosporium, Rhizopus, Penicillium, Aspergillus, unidentified fungi	-
D1/1	Chillies	Solanaceae	Capsicum annuum	Thailand	2	Pseudomonas	Not Pseudomonas	Rhizopus, Cladosporium	-
D3/2	Chillies	Solanaceae	Capsicum annuum	Sri Lanka	526	CNT		Penicillium, Cladosporium, Chaetomium, Pithomyces, unidentified fungi	-
D4/13	Chillies - without stems	Solanaceae	Capsicum annuum	India	10	Pseudomonas	Not Pseudomonas	Rhizopus, Aspergillus, Chaetomium, Cladosporium, unidentified fungi	-
D4/14	Chillies - round	Solanaceae	Capsicum annuum	India	90	CNT		Penicillium, Cladosporium, Aspergillus	-
D4/15	Chillies - small	Solanaceae	Capsicum annuum	India	2	Pseudomonas	Not Pseudomonas	Penicillium, Rhizopus, Aspergillus, unidentified fungi	-
D4/16	Chillies - kashmiri	Solanaceae	Capsicum annuum	India	81	CNT		Penicillium, Rhizopus, Aspergillus	_
D4/17	Chillies - crushed	Solanaceae	Capsicum annuum	India	18	Xanthomonas	Not Xanthomonas	Rhizopus, Cladosporium	-

Sample						Bacteri	а		Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
S3/4	Chillies	Solanaceae	Capsicum annuum	Thailand	NC	CNT		Penicillium, Rhizopus	-
D4/22	Papita seeds - papaya	Caricaceae	Carica papaya	China	96	CNT		Rhizopus, Penicillium, Cladosporium	-
D3/1	Chamomile flowers	Compositae	Chamaemelum nobile	Yugoslavia	18	Erwinia, Agrobacterium	Not <i>Erwinia</i> , not <i>Agrobacterium</i>	Rhizopus, Chaetomium, Cladosporium, Periconia, unidentified fungi	-
S1/3	Chrysanthemum	Asteraceae	Chrysanthemem coronarium	China	NC	CNT		Penicillium, Botrytis, Aspergillus	?
BH3/14	Cassia bark	Lauraeae	Cinnamomum aromaticum	China	NC	CNT		Penicillium, Aspergillus, Epicoccum, Botrytis, Aureobasidium, Cladosporium, unidentified fungi	x
D4/25	Cassia bark	Lauraeae	Cinnamomum aromaticum	Sri Lanka	11	Agrobacterium	Not Agrobacterium	Rhizopus, Aspergillus	х
BR5/3	Watermelon seed	Cucurbitaceae	Citrullus lantatus	Iran	1	CNT		Penicillium, Rhizopus, Aspergillus, Cladosporium	?
BH1/10	Lime skin	Rutaceae	Citrus aurantifolia	Thailand	NC	CNT		Penicillium	?
BH3/2	Lime leaves	Rutaceae	Citrus aurantifolia	Thailand	NC	CNT		Aspergillus, Penicillium, Cladosporium	?
R1/4	Kaffir (lime) leaf	Rutaceae	Citrus aurantifolia	Thailand				Penicillium, unidentified fungi	-
R1/5	Lime leaves	Rutaceae	Citrus aurantifolia	Thailand	NC	CNT		Aspergillus, Penicillium, Rhizopus	х
S2/3	Lime leaves	Rutaceae	Citrus aurantifolia	Thailand	NC	CNT		Penicillium, Aureobasidium	х
BH1/11	Orange peel	Rutaceae	Citrus sinesis	China	NC	CNT		Chaetomium, Rhizopus, Penicillium, Aspergillus	-
BH3/3	Tangerine peel	Rutaceae	Citrus tangerina	China	NC	CNT		Aspergillus, Penicillium, Rhizopus, Penicillium, Tricoderma	-

Sample						Bacteri	а		Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
BH1/9	Codonopsis	Campanulaceae	Codonopsis	China	10	Pseudomonas, Erwinia or Agrobacterium	Not Pseudomonas, not Erwinia or Agrobacterium	Penicillium, Rhizopus, Aspergillus, Mucor, Cladosporium	x
BR1/2	Taro leaves	Araceae	Colocasia esculenta	Philippines	263	Erwinia	Not <i>Erwinia</i>	Penicillium, Chaetomium, Aspergillus, Cladosporium, Sporormiella, Ulocladium, unidentified fungi	-
BR5/1	Molakia (Jew's mallow)	Tiliaceae	Corchorus olitorius	Egypt	11	Pseudomonas, Xanthomonas, Erwinia, Agrobacterium	Not <i>Pseudomonas</i> , not <i>Xanthomonas</i> , not <i>Erwinia</i> , not <i>Agrobacterium</i>	Alternaria, Penicillium, Rhizopus, Cladosporium, Aspergillus, Coniella, Chaetomium	-
BR1/5	Cumin seeds	Apiaceae	Cuminum cyminum	China	55	Pseudomonas	Possibly <i>P. marginalis</i> and saprophytic <i>Pseudomonas</i>	Rhizopus, Cladosporium, Aspergillus, Ulocladium, unidentified fungi	?
KC/1	Cumin seeds	Apiaceae	Cuminum cyminum	India				Penicillium, Rhizopus, Chaetomium, Absidia, unidentified fungi	-
BH1/5	Lemon grass	Gramineae (Poaceae)	Cymbopogon citratus	China	NC	CNT		<i>Rhizopus,</i> unidentified fungi	-
D4/8	Lemon grass	Gramineae (Poaceae)	Cymbopogon citratus	Turkey	82	CNT		Rhizopus, Aspergillus, Chaetomium, Sporomiella, Epicoccum, Melanospora, unidentified fungi	-
D4/9	Lemon grass	Gramineae (Poaceae)	Cymbopogon citratus	Sri Lanka	158	CNT		Penicillium, Rhizopus, Aspergillus, Sporormiella, unidentified fungi	-
BR1/3	Cardamon seeds	Zingiberaceae	Elettaria cardamonum	PNG	446	Erwinia, Agrobacterium	Not <i>Erwinia</i> , not <i>Agrobacterium</i>	Penicillium, Aspergillus, Cladosporium, Epicoccum, unidentified fungi	-
BR1/4	Cardamon pods	Zingiberaceae	Elettaria cardamonum	Guatemala	1	Erwinia, Agrobacterium	Not <i>Erwinia</i> , not <i>Agrobacterium</i>	Aspergillus, Rhizopus, Penicillium, Chaetomium	-

Sample						Bacteri	а		Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
BR1/6	Cardamon brown pods	Zingiberaceae	Elettaria cardamonum	India	3	CNT		Cladosporium, Penicillium	x
BR3/4	Fennel seeds	Apiaceae	Foeniculum vulgare	Lebanon	4	Xanthomonas	Not Xanthomonas	Rhizopus, Stachybotris, Penicillium, Thielavia	-
D4/23	Fennel seeds	Apiaceae	Foeniculum vulgare	India	23	Xanthomonas, Erwinia, Agrobacterium	Not <i>Xanthomonas,</i> not <i>Erwinia,</i> not <i>Agrobacterium</i>	Rhizopus, Alternaria, Chaetomium, Ulocladium, Cladosporium, unidentified fungi	-
BR3/2	Liquorice	Leguminosae	Glycyrrhiza glabra	Syria	34	CNT		Penicillium, Rhizopus, Cladosporium, Aspergillus, Chaetomium, Mucor, Ulocladium, Papulaspora, slime mould	-
BH1/7	Lily flower (golden needles)	Liliacae	Hermerocallis fulva	China				Penicillium, Aspergillus, Cladosporium	-
R1/2	Lily flower (golden needles)	Liliacae	Hermerocallis fulva	China	NC	CNT		No growth	?
BH2/2	Barwon flower (nightblooming cactus)	Cactaceae	Hylocereus undatus	China	NC	CNT		Penicillium, Alternaria, Rhizopus	-
S1/5	Barwon flower (nightblooming cactus)	Cactaceae	Hylocereus undatus	China	NC	CNT		Penicillium, Cladosporium	?
BR1/7	Star anise	Illiciaceae	Illicium anisatum	Iran	55	CNT		Penicillium, Cladosporium, Aspergillus	_
D4/24	Aniseed star	Illiciaceae	Illicium anisatum	China	88	Pseudomonas	Possibly P. marginalis	Penicillium, Rhizopus, Epicoccum	-
BH3/1	Bay leaves	Lauraceae	Laurus nobilis	Indonesia	NC	CNT		Penicillium, Cladosporium, unidentified	-

Sample					Bacteria				Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
D4/3	Bay leaves	Lauraceae	Laurus nobilis	India	1887	Xanthomonas	Not Xanthomonas	Rhizopus, Absidia, Alternaria, Epicoccum, slime mould, unidentified fungi	-
S2/1	Bay leaves	Lauraceae	Laurus nobilis	Turkey	NC	CNT		Penicillium, Cladosporium, Rhizopus, unidentified fungi	-
S3/5	Bay leaves	Lauraceae	Laurus nobilis	Indonesia	NC	CNT		Penicillium	-
R2/4	Honey suckle	Caprifoliaceae	Lonicera sp.	China	NC	CNT		Penicillium, Rhizopus, Chaetomium	-
BR2/1	Tomatoes	Solanaceae	Lycopersicon esculentum	Italy	7	CNT		Penicillium, Rhizopus, Aspergillus	-
D4/12	Tomatoes	Solanaceae	Lycopersicon esculentum	Turkey	1	Pseudomonas	Not Pseudomonas	Penicillium, Rhizopus, Aspergillus, Chaetomium, Melanospora	-
BR5/2	Mint	Labiatae	Mentha	India	10	Pseudomonas, Agrobacterium	Fluorescent Pseudomonas, but not identified to species, not Agrobacterium		?
S3/1	Bitter gourd	Cucurbitaceae	Momordica charantia	China	NC	CNT		Aspergillus, Penicillium	-
BH1/6	Curry leaves	Rutaceae	Murraya koenigii	Indonesia	NC	CNT			x
D4/2	Curry leaves	Rutaceae	Murraya koenigii	Sri Lanka	2002	Pseudomonas, Agrobacterium	Not Pseudomonas, not Agrobacterium	Penicillium, Rhizopus, Aspergillus, Cladosporium, Mucor	?
S2/2	Curry leaves	Rutaceae	Murraya koenigii	Sri Lanka	NC	CNT		Chaetomium, Penicillium, Aspergillus, unidentified fungi	x
S1/1	Water cress	Brassicacae (Cruciferae)	Nasturtium officinale	China	NC	CNT		Aureobasidium, Phoma, Penicillium	-
BH3/15	Lotus leaves	Nelumbonaceae	Nelumbo nucifera	Thailand	NC	CNT		Penicillium, Rhizopus, unidentified fungi	-

Sample					Bacteria				Virus
Code	Product	Family	Genus / Species	Origin	Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
D4/10	Olive leaves	Oleaceae	Olea europaea	Turkey	301	Pseudomonas	Not Pseudomonas	Penicillium, Aspergillus, Cladosporium	-
D4/5	Marjoram	Labiatae	Origanum majorana	Turkey	1	Pseudomonas	Not Pseudomonas	Penicillium, Rhizopus, Aspergillus, Chaetomium	-
BR4/1	Oregano bunches	Labiatae	Origanum vulgare	Greece	19	CNT		Penicillium, Aspergillus, Chaetomium, Sporormiella, unidentified fungi	?
D4/11	Rampe leaves (pandan)	Pandanaceae	Pandanus amaryllifolius	Sri Lanka	6	Pseudomonas	Not Pseudomonas	Chaetomium	-
D2/1	Poppy seeds	Papaveraceae	Papaver somniferum	Poland	7	Pseudomonas, Xanthomonas, Agrobacterium	Not <i>Pseudomonas,</i> not <i>Xanthomonas,</i> not <i>Agrobacterium</i>	Penicillium, Rhizopus, Aspergillus, Cladosporium, unidentified fungi	-
BH3/17	Black beans	Leguminosae- Papilionoideae	Phaseolus vulgaris	China?	3	Pseudomonas, Xanthomonas	Possibly <i>P. marginalis</i> , not <i>Xanthomonas</i>	Penicillium, Cladosporium, Aspergillus, unidentified fungi	-
D1/2	Kidney beans	Leguminosae- Papilionoideae	Phaseolus vulgaris	Pakistan	131	CNT		Rhizopus, Penicillium, unidentified fungi	?
S1/2	Betel leaves	Piperaceae	Piper betel	Thailand	NC	CNT		No growth	-
BH2/8	Prunella vulgaris (self heal)	Lamiacae	Prunella vulgaris	China	NC	Erwinia	Not <i>Erwinia</i>	Penicillium, unidentified fungi	?
BH2/1	Chili prunella	Lamiacae	Prunus	China	NC	Erwinia	Not <i>Erwinia</i>	Aspergillus, Chaetomium, Penicillium	-
BH2/6	Sweet turnip (daikon)	Brassicacae (Cruciferae)	Raphanus sativus	China	NC	CNT		No growth	?
BR3/3	Roses	Rosaceae	Rosa	Jordan	4	CNT		Rhizopus, Aspergillus, Penicillium, Ulocladium, unidentified fungi	-
D4/7	Rosemary	Labiatae	Rosmarinus officinalis	Spain	392	Pseudomonas	Not Pseudomonas	Penicillium, Aspergillus, Cladosporium, unidentified fungi	-

Sample Code	Product	Family	Genus / Species	Origin	Bacteria				Virus
					Count cfu/g	Possible Pathogen	Pathogen Confirmation	Fungi isolated	Possible symptoms
BR3/1	Sage leaves	Labiatae	Salvia	Jordan	3	CNT		Aspergillus, Neurospora, Chaetomium, Alternaria, Papulaspora	?
D4/6	Senna pods	Fabaceae	Senna	India	1629	CNT		Penicillium, Rhizopus, unidentified fungi	х
BR3/5	Sesame seeds	Pedaliaceae	Sesamum orientale	Lebanon	1069	Pseudomonas	Possibly P. marginalis	Rhizopus, Penicillium, Aspergillus	-
D4/4	Fenugreek leaves	Leguminosae- Papilionoideae	Trigonella corniculata	India	269	Pseudomonas, Xanthomonas, Erwinia	Not <i>Pseudomonas</i> , not <i>Xanthomonas</i> , not <i>Erwinia</i>	Rhizopus, Penicillium, Cladosporium, unidentified fungi	-
D1/3	Mung beans	Leguminosae - Papilionoideae	Vigna radiata	Pakistan	2183	Pseudomonas, Xanthomonas, Agrobacterium	Fluorescent Pseudomonas, but not identified to species, not Xanthomonas, not Agrobacterium	Rhizopus, Cladosporium, Aspergillus, Penicillium, Macrophomina phaesolina* (Pathogen), unidentified fungi	-
S3/2	Snake beans	Leguminoseae	Vigna sesquipedalis	China	NC	CNT		Khuskia oryzae, Chrysonilia sitophila, Nodulisporium, Cladosporium	-
D4/19	Horse gram	Leguminosae- Papilionoideae	Vigna unguiculata	Sri Lanka	38	<i>Erwinia</i> or Agrobacterium	Not <i>Erwinia</i> or Agrobacterium	Penicillium, Rhizopus, Aspergillus, Cladosporium, unidentified fungi	х
D4/26	Ginger roots	Zingiberaceae	Zingiber officinale	India	54	Erwinia	Not <i>Erwinia</i>	Penicillium, Aspergillus, Rhizopus, Cladosporium, Epicoccum	?
S1/4	Ginger slice	Zingiberaceae	Zingiber officinale	China	NC	CNT		Cladosporium, Rhizopus, Penicillium	?

NC = not counted

x = not tested

CNT= colonies not typical ? = possible symptoms observed

- = no symptoms were observed