

Know-how for Horticulture™

Use of vegetable transplants to introduce beneficial and biocontrol microbes into the crop environment

Ian Macleod Serve-Ag Research Pty Ltd

Project Number: VG02088

VG02088

This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry.

The research contained in this report was funded by Horticulture Australia Ltd with the financial support of Serve-Ag Research Pty Ltd (on behalf of industry contributors) and the vegetable industry.

All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government.

The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests.

ISBN 0 7341 0929 6

Published and distributed by: Horticultural Australia Ltd Level 1 50 Carrington Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: horticulture@horticulture.com.au

© Copyright 2004

Know-how for Horticulture™

FINAL REPORT

VG02088 FINAL REPORT Use of vegetable transplants to introduce beneficial and biocontrol microbes into the crop environment

Tasmania, 2003

Facsimile: +61 3 6423 4876 Email: <u>sar@serve-ag.com.au</u> Web: <u>www.serve-ag.com.au</u>

Project Number: VG02088 Client: Horticulture Australia Limited Author: **Rachel Walker** Project Leader: Ian Macleod Serve-Ag Research Report Number: VG02088 Report Date: 30 June 2004 Serve-Ag Research Head Office 16 Hillcrest Road Devonport Tas 7310 Australia Telephone: +61 3 6423 2044

Horticulture Australia Ltd Project VG02088

30 June, 2004

Principal Investigator	Ian Macleod Serve-Ag Research 16 Hillcrest Road Devonport, Tasmania 7310 Email: <u>imacleod@serve-ag.com.au</u>
Key Personnel	Dr Rachel Walker Serve-Ag Research 16 Hillcrest Road Devonport, Tasmania 7310 Email: <u>rwalker@serve-ag.com.au</u>
	Felicity Wardlaw Department of Primary Industries Water and Environment Stoney Rise Centre, PO Box 303 Devonport, Tasmania 7310 Email: <u>Felicity.Wardlaw@dpiwe.tas.gov.au</u>

This report was funded by Horticulture Australia Ltd to evaluate commercial microbial inoculants for potential to improve yield and quality of transplanted crops.

Any recommendations contained in this publication do not necessarily represent current Horticulture Australia policy. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without first obtaining specific, independent professional advice in respect of the matters set out in this publication.

Funding Sources:

Horticulture Australia Ltd

DEPARTMENT of PRIMARY INDUSTRIES, WATER and ENVIRONMENT

Voluntary contributions from:

- Nutri-Tech Solutions Pty Ltd ٠
- Zadco for Quality Gro Pty Ltd

Know-how for Horticulture™

Table of Contents

MEDIA SUMMARY	1
TECHNICAL SUMMARY	2
INTRODUCTION	5
AIMS	
LETTUCE FIELD TRIALS	
Methods and Materials	
Results	
Table 1 - Lettuce dry weight root:shoot ratios (2003/04)	
Table 2 - Nutrient uptake in lettuce at 3 weeks after transplanting (2003/04)	
Table 3 - Nutrient uptake in lettuce at 7 weeks after transplanting (2003/04)	
Table 4 - Mean Visual Ratings at Harvest for 2002/03 Season	
Table 5 - Mean Visual Ratings at Harvest for 2003/04 Season	
Graph 1 - Lettuce Head Size At Harvest (2002/03)	
Graph 2 - Lettuce Head Weight At Harvest (2002/03)	
Table 6 - Mean Yield Assessment at Harvest (2002/03)	
Table 7 - Mean Yield Assessment at Harvest (2003/04)	
Graph 3 - Lettuce Head Weight at Harvest (2003/04)	
Discussion	
LETTUCE POT TRIALS	
MATERIALS AND METHODS	
Results	
Graph 4 - Mean Vigour Ratings (2002/03)	
Graph 7 - Mean Disease Incidence (2002/03)	
Table 8 - Mean percentage of live plants remaining at 2 weeks after transplanting (2003/04)	
Discussion	
BROCCOLI FIELD TRIAL	
METHODS AND MATERIALS	
Results	
Table 9 - Broccoli dry weight root:shoot ratios	
Table 10 - Nutrient uptake in broccoli crop 6 weeks after transplanting	
Graph 6 - Mean head weights of broccoli harvested from trial (both cuts)	
Table 11 - Mean total yield from each plot (both cuts)	
Table 12 - Mean percentage of plot harvestable on first cut	
Table 13 - Mean percentage of harvested heads with signs of white blister (both cuts)	
Table 14 - Mean percentage of harvested heads with hollow stem (both cuts)	
Table 15 - Mean percentage floret recovery	
DISCUSSION	
BROCCOLI POT TRIAL	
GENERAL DISCUSSION	
RECOMMENDATIONS TO GROWERS	
APPENDIX I - 2003/04 LETTUCE AND BROCCOLI TRIAL SITE SOIL TEST	
Appendix II – Trial Details	51
Trial Plans	
Treatment Application Details - 2002/03	
Treatment Application Details - 2003/04	
APPENDIX III - COMPLETE DATA	
2002/03 Data	
2003/04 Data	
APPENDIX IV - STATISTICAL ANALYSIS	
2002/03 Trials	
2003/04 Trials	
APPENDIX V - ACKNOWLEDGMENTS	

Media Summary

There are currently several products being marketed in Australia which claim to assist in root development and control of soil-borne diseases. Typically, these products are sold as soil-enhancers or soil amendments, and there has been no requirement to demonstrate product efficacy for registration with the Australian Pesticides and Veterinary Medicines Authority.

The aim of this project was to independently assess a range of commercially available products, and to determine whether treatment of transplants with microbial inoculants can improve crop vigour, yields and quality.

Trials were conducted in transplanted lettuce and broccoli crops grown on the north west coast of Tasmania. Trials were conducted over the 2002/03 and 2003/04 growing seasons.

No treatments caused any crop phytotoxicity at any stage of growth in lettuce or broccoli plants. No treatments resulted in any obvious quality defects. Generally, differences in subjective quality measurements were only relative, and all product harvested from the field trials was of acceptable commercial quality.

In the trials conducted as part of this project, the only product that consistently improved yields in all field trials in both seasons for both lettuce and broccoli was worm castings. This is not to say that other products might not perform very well under different growing conditions. Average head weight improvements in plots treated with worm castings were 10% or higher in both crops. Total crop yields of broccoli treated with worm castings were significantly higher than other treatments.

In the 2003/04 trials, efforts were made to determine whether treatment benefits were increased with nursery application as well as field application. Was the use of microbial inoculants in the nursery improving root development and the crops' potential for yield improvements? Data to address this question was inconsistent. No treatment consistently promoted root growth in transplant plugs. Yield and quality results showed no pattern in beneficial effects from nursery application of microbial inoculants.

Trial work in the nursery highlighted some critical considerations for the use of microbial inoculants in the nursery. Typically, transplant nurseries provide all transplants for a district. It is critical that the nursery has excellent disease management strategies in place to prevent spread of disease within an area. A topical example is management of white blister in brassica transplants to prevent district outbreaks. Given that there are currently no biofungicides registered with the APVMA, this means that few transplant growers are prepared to take the risk to use products with unproven claims. A further issue with using biological products in transplant nurseries is compatibility with necessary synthetic chemical spray programs. The majority of beneficial microbial products are not compatible with synthetic chemicals. In many cases, no information on product compatibility is given on the labels of biological products.

Undoubtedly, there is considerable interest in the application of various microbial products in agriculture. The scope of this project only allowed for limited evaluation of a few commercially available products. There are a lot of other available products that could not be included in trials.

Use of these products in conventional agriculture requires a considered approach. Growers must be prepared to evaluate how these products perform in their own production systems. Manufacturers of biological products should aim to provide as much information as possible to assist growers with decision making. A basic checklist can assist growers to learn how well a product has been developed. The label, packaging, storage requirements and formulation can all give the grower clues as to the professionalism of product development. Product performance under particular growing conditions is often best evaluated by the grower, as long as a control strip is left in the paddock for comparison.

Technical Summary

There are currently several products being marketed in Australia which claim to assist in root development and control of soil-borne diseases. Typically, these products are sold as soil-enhancers or soil amendments, and there has been no requirement to demonstrate product efficacy for registration with the Australian Pesticides and Veterinary Medicines Authority.

The aim of this project was to independently assess a range of commercially available products, and to determine whether treatment of transplants with microbial inoculants can improve crop vigour, yields and quality.

Trials were conducted in transplanted lettuce and broccoli crops grown on the north west coast of Tasmania. Trials were conducted over the 2002/03 and 2003/04 growing seasons. Field trials were conducted in conjunction with pot trials to evaluate the same treatments for *Sclerotinia minor* disease control. Pots were inoculated with *Sclerotinia minor* cultured on barley grains.

A range of different 'biological' products was used, including *Bacillus subtilis* strains, *Trichoderma* strains, compost teas and worm castings. The products chosen were nearly all commercial products, which are routinely advertised in major national growers' magazines. A number of the products selected for evaluation were certified for use in organic agriculture.

Trial treatments were carried out in a commercial transplant nursery with liquid formulations applied as a drench at seeding, and granular formulations incorporated into the plug media. Some treatments were applied during transplant growth, but the majority were applied as a second drench at transplanting, or soil incorporated prior to transplanting.

No treatments caused any crop phytotoxicity at any stage of growth in lettuce or broccoli plants. No treatments resulted in any obvious quality defects. Generally, differences in subjective quality measurements were only relative, and all product harvested from the field trials was of acceptable commercial quality.

In the trials conducted as part of this project, the only product that consistently improved yields in all field trials in both seasons for both lettuce and broccoli was worm castings. Average head weight improvements in plots treated with worm castings were 10% or higher in both crops. Total crop yields of broccoli treated with worm castings were significantly higher than other treatments.

Different results could be expected under different growing conditions. The performance of many of these types of products depends on localised microbial interactions within the crop environment. No products were comparable with commercial treatments for disease control under the high *Sclerotinia* pressure in pot trials.

In the 2003/04 trials, efforts were made to determine whether treatment benefits were increased with nursery application as well as field application. Was the use of microbial inoculants in the nursery improving root development and the crops' potential for yield improvements? Data to address this question was inconsistent. No treatment consistently promoted root growth in transplant plug. Yield and quality results showed no pattern in beneficial effects from nursery application of microbial inoculants.

Trial work in the nursery highlighted some critical considerations for the use of microbial inoculants in the nursery. Typically, transplant nurseries provide all transplants for a district. It is critical that the nursery has excellent disease management strategies in place to prevent spread of disease within an area. A topical example is management of white blister in brassica transplants to prevent district outbreaks. Given that there are currently no biofungicides registered with the APVMA, this means few transplant growers are prepared to take the risk to use products with unproven claims. A further issue with using biological products in transplant nurseries is compatibility with necessary synthetic chemical spray programs. The majority of beneficial microbial products are not compatible with synthetic chemicals. In many cases, no information on product compatibility is given on the labels of biological products.

Technical Summary (Cont.)

Undoubtedly, there is considerable interest in the application of various microbial products in agriculture. The scope of this project only allowed for limited evaluation of a few commercially available products. There are lot of other available products that could not be included in trials.

Use of these products in conventional agriculture requires a considered approach. Growers must be prepared to evaluate how these products perform in their own production systems. Manufacturers of biological products should aim to provide as much information as possible to assist growers with decision making. A basic checklist can assist growers to learn what how well a product has been developed. The label, packaging, storage requirements and formulation can all give the grower clues as to the professionalism of product development. Product performance under particular growing conditions is often best evaluated by the grower, as long as a control strip is left in the paddock for comparison.

Introduction

Within the last decade, there has been global growth in 'biological agriculture'. The current edition of the BioPesticides Manual (2002) contains descriptions of 273 active ingredients for biological products. In Australia, various microbial products are being marketed to growers with claims for improved root development, crop growth and control of soil-borne diseases. Typically, these products are sold as soil-enhancers or soil-amendments, and are applied directly to the soil. However, it is difficult for these introduced microbes to compete with existing biota and establish adequate populations to exert disease control over soil-borne pathogens.

Inoculating transplants to establish desired microbial populations within the root environment prior to transplanting can potentially enhance the ability of the biocontrol agent to combat pathogens. This approach is currently also being trialed overseas.

There is interest in beneficial and biocontrol products from both conventional and organic vegetable growers. However, Australian regulatory authorities have not assessed many of these products, and there is no replicated trial data available.

The aim of this project was to independently assess a range of commercially available products, and to determine whether treatment of transplants with microbial inoculants can improve crop vigour, yields and quality.

Aims

- To screen commercial microbial inoculants for potential to improve crop vigour, quality and yield in Iceberg lettuce.
- To determine whether inoculation of transplants is a means of enhancing the ability of biocontrol microorganisms to combat pathogens.
- To determine if there are any phytotoxicity problems associated with application at sowing or drenching of young, tender plants.

Review of Available Products

Over recent years, there has been an increase in the number of commercial formulations of biological type compounds marketed to industry. These products include a broad range of compounds which claim to promote crop health in a number of ways, including:

- Biological control
- Stimulation of plant defence responses
- Improved nutrient uptake and nutrient balance within the plant
- Promotion of plant health

It is often hard to distinguish between products which are based on microbial constituents and products whose mode of action is to stimulate microbial activity in the soil. Products marketed in this area include:

- Compost teas
- Plant tonics
- Soil and microbial amendments
- Soil and biological enhancers
- Microbial brews (strains of *Trichoderma, Bacillus subtilis, Coniothyrium minitans*)
- Worm castings
- Humic and fulvic acids
- Kelp extracts
- Fish emulsions

Currently, no microbial amendment products have been registered with the Australian Pesticides and Veterinary Medicines Authority. All these types of products are promoted through retailers and in trade magazines. Products for inclusion in this project were chosen by:

- Consultation with growers and vegetable agronomists
- Reviews of advertisements in Good Fruit and Vegetables
- Internet searches
- Reviews of previous project work conducted by Serve-Ag Research

A range of different 'biological' products was used, including *Bacillus subtilis* strains, *Trichoderma* strains, compost teas and worm castings. The products chosen were nearly all commercial products, which are routinely advertised in major national growers' magazines. A number of the products selected for evaluation were certified for use in organic agriculture.

Trial treatments were carried out in a commercial transplant nursery, with liquid formulations applied as a drench at seeding, and granular formulations incorporated into the plug media. Some treatments were applied during transplant growth, but the majority were applied as a second drench at transplanting, or soil incorporated prior to transplanting. The following table shows a simplified treatment list for the trials, which indicates when different products were incorporated.

Lettuce and broccoli were chosen as target crops because a lot of biological products include these crops as target crops in their promotional material. Broccoli and lettuce are among the major transplanted crops in Australia.

Review of Available Products (Cont.)

TREATMENT NAME	Sowing	During seedling growth	Soil applicaiotn/ incorporation prior to transplanting	At transplanting	During crop growth
Control					
Beneficial micro- organisms	\checkmark	\checkmark	×	\checkmark	\checkmark
Bacillus subtilis A	\checkmark	×	×	\checkmark	\checkmark
Biological program	\checkmark	×	×	✓	\checkmark
Compost tea program	×	×	\checkmark	\checkmark	\checkmark
<i>Trichoderma</i> program A	×	×	×	\checkmark	\checkmark
<i>Trichoderma</i> program B	×	×	\checkmark	\checkmark	\checkmark
Bacillus subtilis B	\checkmark	\checkmark	×	\checkmark	\checkmark
<i>Trichoderma</i> program C	\checkmark	\checkmark	×	\checkmark	\checkmark
<i>Trichoderma</i> program D	\checkmark	×	×	×	×
Worm castings	\checkmark	×	\checkmark	×	×
<i>Trichoderma</i> program E	\checkmark	x	×	\checkmark	\checkmark
Biocontrol mixture	\checkmark	×	×	\checkmark	\checkmark
Commercial control (Sumisclex)	×	×	×	✓	\checkmark

Simplified treatment list showing application regimes for different products

1

The same treatments were applied to both lettuce and broccoli field and pot trials.

Lettuce Field Trials

Methods and Materials

Lettuce trials were conducted in the summers of 2002/03 and 2003/04. Both trials were conducted at Forthside Vegetable Research Station

In the 2002/03 season, the emphasis of trial work was on screening a large range of products. There were 4 treatment replicates in trials.

NO.	TREATMENT CODE	PRODUCTS IN TREATMENT (MANUFACTURER)
1	Control	Untreated Control
2	Beneficial micro-organisms	Effective Micro-organisms (Vital Resources)
3	Bacillus subtilis A	Companion (Spray Gro)
4	Compost tea program	Mend Compost Tea + Aloe Tech + Bio-N + Bio-P + Seed Start + Nutri-Kelp + Bio-Plex (Nutri-Tech Solutions)
5	Trichoderma program A	Trichoshield + Seed Start + Black Gold + Bio-Plex + Humatech (Nutri-Tech Solutions)
6	<i>Trichoderma</i> program B	Trichoshield + Aloe Tech + Nutrikelp + B-sub (Nutri-Tech Solutions)
7	Bacillus subtilis B	BC 403 (Organic Crop Protectants – experimental product)
8	<i>Trichoderma</i> program C	BC 702/703 (Organic Crop Protectants – experimental product)
9	<i>Trichoderma</i> program D	Trichodry 6S (Agrimm Technologies)
10	Worm castings A	Bioverm (Vermitech)
11	Worm castings B	Granular Bioverm (Vermitech)
12	<i>Trichoderma</i> program E	Tri-D25 (Zadco)
13	Biocontrol mixture	Superzyme (Zadco)
14	Commercial control	Sumisclex (Sumitomo Chemical)

Products were applied at rates recommended by the manufacturer. A detailed treatment list is given in Appendix ii.

In 2003/04, the number of treatment replicates was increased from 4 to 7 in order to better detect treatment differences. Only 4 different biological treatments were used in the trials, and the emphasis on trial work was to quantify the extent of treatment effects. For each of the treatments listed below, one treatment regime included nursery application and one regime included nursery and field application.

Products evaluated in 2003/04 Trials

NO.	TREATMENT	PRODUCTS IN TREATMENT (MANUFACTURER)	
1	Control	Untreated Control	
2	Biological Program (field only)	Mend Compost Tea + Aloe Tech + Bio-N + Bio-P + Bio-Plex + Nutri-Kelp	
3	Biological Program (nursery, field)	+ B-sub + Fulvic 1400 + Shuttle Seven + Brix Master + Veg-Tech Triple Ten + Tonic Tech + Cloak Spray Oil (Nutri-Tech Solutions)	
4	Worm Castings (field only)	Bioverm	
5	Worm Castings (nursery, field)	(Vermitech)	
6	<i>Bacillus subtilis</i> (field only)	Companion	
7	<i>Bacillus subtilis</i> (nursery, field)	(Spray Gro)	
8	Biocontrol mixture (field only)	Superzyme (Zadco)	
9	Biocontrol mixture (nursery, field)		
10	Commercial Control (field only)	Sumisclex	
11	Commercial Control (nursery, field)	(Sumitomo)	

Trials were sown at Hills Transplants using a commercial seeding line. Trays (198 cells/tray) were marked with coloured tape to indicate different treatments. After sowing, trays were placed in a germination room for 2 days and then moved to outside bays, where drench treatments were applied with a watering can (Photograph 1). Trays were drenched until saturated.

Prior to transplanting in 2003/04, seedlings were assessed for growth development in the nursery. Visual observation of root development were made, and a photograph was taken of 10 representative seedlings from each treatment. No visual differences were observed between plants.

A sub-sample of 100 seedlings was randomly selected from the planting trays. Leaves were cut off at soil level with a razor blade. Root plugs and leaves were dried separately in a drying oven for one week to determine dry matter root:shoot ratios. The assumption was that the volume of each root plug was

identical and any differences in the mass of root plugs was attributable to additional root development. Dry weight root:shoot ratios are given in Table 1.

Lettuce Field Trials (Cont.)

No pre-planting fertiliser was applied because the aim of the trial was to grow the plants under base conditions so that additional benefits resulting from microbial interactions could be detected. A soil test (Appendix i) showed that the trial site had reasonable fertility. The trial was top dressed with Nitrophoska Blue Special at 4 and 6 weeks after transplanting. Fertiliser recommendations were made by a senior district agronomist and he viewed the trial at regular intervals.

Treatments were applied as per application schedule recommended by product manufacturers. Sprays were applied using a carbon dioxide pressurised 1.5 m boom sprayer. Three TeeJet TX12 nozzles spaced at 50 cm were used. Application volume was 250 L/ha and the pressure was 225 kPa.

Grower	Forthside Vegetable Research Station
Location	Forth, North West Tasmania
Grid Reference	55GDQ378383
Soil Type	Ferrosol (see Appendix i for 2003/04 site soil test)
Сгор	Iceberg Lettuce
Varieties	Magnum (2002/03 season) and Target (2003/04 season)
Trial Design	Randomised complete block
Replicates	4 (2002/03 aseason) and 7 (2003/04 season)
Plot Size	6 m x 1 bed (1.2 m)
Plant Spacing	30 cm
Row Spacing	40 cm

Site Details for Lettuce Field Trials

Chronology of Events for 2002/03 Trial

DATE	DAYS AFTER SOWING	EVENT
02/10/02	0	Lettuce trays sown. Media-incorporation of treatments 9, 10, 11. Lettuce trays in shade house to prevent thermo-dormancy.
04/10/02	2	Lettuce trays moved to outside bay. Treatments 2, 3, 7, 8, 12, 13 applied as tray drenches with watering can (Photograph 1).
6/11/02	35	Treatments 2, 7, 8 applied with a watering can.
11/11/02	40	Trial area pegged.
12/11/02	41	Treatments 4, 5, 6, 10, 11 applied to field plots.
13/11/02	42	Treatments 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14 applied as drench to transplants with watering can. Transplants planted using commercial transplanter (Photograph 2).
	DAYS AFTER TRANSPLANTING	
15/11/02	2	Kerb applied for weed control. Rate of 4.5 L/ha applied with water rate of 250 L/ha using DG8002 fan jets at 225 kPa.
26/11/02	13	Pirimor applied for aphid control. Rate of 500 g/ha applied with water rate of 280 L/ha using TX12 nozzles at 300 kPa.
29/11/02	16	Treatments 2, 3, 4, 5, 6, 7, 14 applied.
03/12/02	20	Calcium nitrate applied at rate of 125 kg/ha. Broadcast by hand and irrigated in.
06/12/02	23	Treatments 2, 4, 5, 6 applied.
12/12/02	29	Treatments 2, 3, 4, 5, 6, 7, 8, 14 applied.
18/12/02	35	Nitrophoska Perfekt applied at rate of 250 kg/ha. Broadcast by hand and irrigated in.
19/12/02	36	Treatments 2, 4, 5, 6, 7, 12, 13 applied.
23/12/02	40	Hand weeding of trial area.
02/01/03	50	Harvest assessment. (Photographs 4 & 5).
03/01/03	51	Pegs removed.
06/01/03	54	Trial area mulched in.

Chronology of Events for 2003/04 Trial

DATE	DAYS AFTER SOWING*	EVENT
12/12/03	0	Sowing. Treatment 5 incorporated into plug media. Trays moved to germination room.
15/12/03	3	Treatments 3, 7, 9 applied as drench. Trays moved to outside bays.
08/01/04	27	Trial area pegged. Treatments 4 & 5 incorporated into field plots using a rake.
12/01/04	31	Transplanting. Treatments 2, 3, 6, 7, 8, 9, 10, 11 applied.
	DAYS AFTER TRANSPLANTING	
20/01/04	8	Treatments 2 & 3 applied (270 L/ha water). Weeds in crop hoed out.
27/01/04	15	Treatments 2, 3, 6, 7 applied (270 L/ha water). Weeds in crop hoed out.
03/02/04	22	Treatments 2 & 3 applied.
10/02/04	29	Treatments 2, 3, 6, 7 applied (270 L/ha water). Weeds in crop hoed out.
11/02/2004	30	Nitrophoska Blue Special applied at 65 kg/ha. Broadcast by hand and irrigated in.
17/02/04	36	Treatments 2 & 3 applied (270 L/ha water).
24/02/04	43	Treatments 2, 3, 6, 7, 8, 9 applied (270 L/ha).
25/02/04	44	Nitrophoska Blue Special applied at 65 kg/ha. Broadcast by hand and irrigated in.
02/03/04	50	Treatments 2 & 3 applied (270 L/ha water).
10/03/04	58	Harvest

* A previous trial was sown on 5/11/03. However, these plants were accidentally sprayed by nursery staff with a Kocide, Mancozeb and Bravo mix. The trial had to be abandoned and a new trial was commenced.

The following parameters were assessed in the field:

1. NUTRIENT UPTAKE ASSESSMENT

TIMING -	3 and 7 weeks after transplanting
SAMPLE SIZE -	10 leaves per replicate plot. Replicates were bulked for treatment samples.
METHOD -	The youngest fully expanded leaf was collected at 7.30 am. Samples were stored in an Eski and were processed the same day in the Serve-Ag Analytical Services Laboratory using commercial methodology.
SUMMARISED RESULTS -	Tables 2 & 3

2. PLOT VIGOUR ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	Whole plot
METHOD -	Visual rating of crop vigour
SUMMARISED RESULTS -	Tables 4 & 5

3. COLOUR ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	2002/03: Subsample of 10 heads, with chosen heads being the best from across the plot. 2003/04: Whole plot assessed
METHOD -	Visual rating of crop colour
SUMMARISED RESULTS -	Tables 4 & 5

4. HEAD SIZE ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	2002/03: Subsample of 10 heads, with chosen heads being the best from across the plot. Heads were assessed quantitatively using method below. 2003/04: Whole plot assessed using visual rating
METHOD -	 2002/03: The diameter of each head was measured at the widest part, using a flexible tape measure. The heads were measured with the wrapping leaves remaining after commercial cutting. 2003/04: Visual rating of crop vigour
SUMMARISED RESULTS -	Table 5, Graph 1
COMPLETE DATA -	Appendix iii
STATISTICAL ANALYSES -	Appendix iv Analysis of variance was used to determine significant differences at p<0.05 for assessments for 2002/03 season. There were no significant differences between treatments.

5. HEAD SHAPE ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	2002/03: Subsample of 10 heads, with chosen heads being the best from across the plot. 2003/04: Whole plot assessed visually.
METHOD -	Visual rating of head shape.
SUMMARISED RESULTS -	Tables 4 & 5
COMPLETE DATA -	Appendix iii

6. HEAD FIRMNESS ASSESSMENT

DATE -	2/01/03
SAMPLE SIZE -	Subsample of 10 heads, with chosen heads being the best from across the plot.
METHOD -	Pressing on lettuce with hand to rate head firmness. Excellent firmness was for heads which were compact with good heart developent. Poor firmness was given for soft heads with little or no heart formation.
SUMMARISED RESULTS -	Tables 4 & 5
COMPLETE DATA -	Appendix iii

7. HEAD WEIGHT ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	Subsample of 10 heads, with chosen heads being the best from across the plot.
METHOD -	Heads were weighed on field scales and weights recorded.
SUMMARISED RESULTS -	Graphs 2 & 3. Tables 6 & 7
COMPLETE DATA -	Appendix iii
STATISTICAL ANALYSES -	Appendix iv Analysis of variance was used to determine significant differences at p<0.05. There were significant differences between treatments.

8. CROP PHYTOTOXICITY ASSESSMENT

TIMING -	Throughout crop growth
SAMPLE SIZE -	Whole plot
METHOD -	Visual observation of crop
SUMMARISED RESULTS -	There were no signs of phytotoxicity observed in any plots. All treatments were safe to the lettuce crop

Photograph 1 - Drenching treatments being applied after transplant trays were sown (2002/03)

Photograph 2 - Transplanting at Forthside Vegetable Research Station (2002/03)

Photograph 3 - View of field trial on 23/12/02, 10 days before harvest

Photograph 4 - Harvest assessment, 2/01/03

Photograph 5 - Weighing individual heads using field scales (2002/03)

Photograph 6 - Harvest assessment, 10/03/04

Results

Table 1 - Lettuce dry weight root:shoot ratios (2003/04)

Treatment	Root:Shoot Ratio		
Untreated Control	8.57		
Biological Program	9.11		
Worm castings	9.82		
Bacillus subtillus	8.95		
Biocontrol mixture	9.24		

Table 2 - Nutrient uptake in lettuce at 3 weeks after transplanting (2003/04)

No.	TREATMENT	NO3	Р		K	(Ca	Mg	S
1	Untreated control	830	64		25	49	3	314	89	82
3	Biological program	770	57		25	43	2	283	86	73
5	Worm castings	512	56		23	70		320	84	79
7	Bacillus subtilis	709	51		25	14	3	332	89	71
9	Biocontrol mixture	703	57		24	19	3	368	89	87
11	Commercial control	833	52	2374		2	283	80	70	
			•							
No.	TREATMENT	Zn	В		Cu	F	e	Mn	Na	Мо
1	Untreated control	1.01	0.56	0).40	3.3	31	35	117	0.02
3	Biological program	0.87	0.56	C	0.36	2.5	55	20	115	0.01
5	Worm castings	0.81	0.62	0).34	2.7	70	16	124	0.03
7	Bacillus subtilis	0.77	0.57	0).39	2.5	55	18	116	0.02
9	Biocontrol mixture	0.81	0.61	().37	2.8	37	19	122	0.02
11	Commercial control	0.75	0.50	C).35	2.4	17	19	118	0.01

No.	TREATMENT	NO3	Р	к	Ca	Mg	S
1	Untreated control	1050	50	2635	520	138	53
3	Biological program	592	55	2108	344	105	43
5	Worm castings	571	56	2265	416	125	45
7	Bacillus subtilis	710	53	2222	314	98	41
9	Biocontrol mixture	841	59	2334	434	133	45
11	Commercial control	749	64	2031	308	99	49

Table 3 - Nutrient uptake in lettuce at 7 weeks after transplanting (2003/04)

No.	TREATMENT	Zn	В	Cu	Fe	Mn
1	Untreated control	0.45	0.17	0.35	5.64	2.26
3	Biological program	0.48	0.09	0.47	3.74	1.63
5	Worm castings	0.38	0.10	0.35	4.77	1.99
7	Bacillus subtilis	0.45	0.08	0.42	3.75	1.49
9	Biocontrol mixture	0.51	0.14	0.32	4.30	2.18
11	Commercial control	0.44	0.05	0.31	3.95	1.77

NO.	TREATMENT	Plot vigour#	Colour*	Shape*	Firmness*
1	Control	1.25	1.00	1.25	1.13
2	Beneficial micro-organisms	2.33	1.00	1.18	1.30
3	Bacillus subtilis A	1.50	1.00	1.00	1.25
4	Compost tea program	1.00	1.00	1.38	1.08
5	Trichoderma program A	1.25	1.00	1.48	1.35
6	<i>Trichoderma</i> program B	1.25	1.00	1.18	1.45
7	Bacillus subtilis B	1.75	1.00	1.25	1.18
8	<i>Trichoderma</i> program C	1.50	1.00	1.50	1.13
9	<i>Trichoderma</i> program D	1.50	1.00	1.35	1.33
10	Worm castings A	1.00	1.00	1.13	1.13
11	Worm castings B	1.00	1.00	1.33	1.13
12	<i>Trichoderma</i> program E	1.25	1.00	1.20	1.38
13	Biocontrol mixture	2.00	1.00	1.08	1.18
14	Sumisclex	1.25	1.00	1.55	1.30

Table 4 - Mean Visual Ratings at Harvest for 2002/03 Season

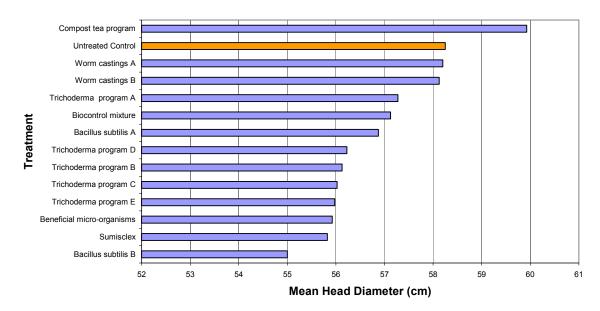
Assessed as rating for whole plot. * Assessed as individual ratings for 10 heads cut from each plot.

1 = Excellent

2 = Good

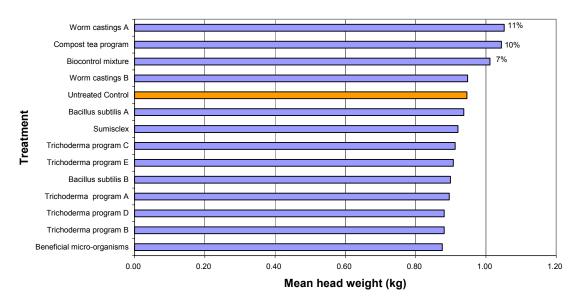
3 = Poor

NO.	TREATMENT	Vigour	Colour	Size	Shape	Firmness
1	Untreated Control	2.1	3.0	2.1	1.9	2.0
2	Biological Program (field only)	2.4	3.0	2.5	2.1	2.4
3	Biological Program (nursery, field)	2.7	3.0	2.6	2.6	2.6
4	Worm Castings (field only)	2.2	3.0	2.4	2.0	2.4
5	Worm Castings (nursery, field)	2.7	3.0	2.4	2.3	2.6
6	Bacillus Subtilis (field only)	2.6	2.9	2.3	2.3	1.9
7	Bacillus Subtilis (nursery, field)	2.5	2.9	2.5	2.6	2.2
8	Biocontrol mixture (field only)	2.4	3.0	2.4	2.4	2.2
9	Biocontrol mixture (nursery, field)	2.6	3.0	2.8	2.7	2.5
10	Commercial Control (field only)	2.3	3.0	2.6	2.3	2.1
11	Commercial Control (nursery, field)	2.4	2.9	2.4	2.1	2.4


Table 5 - Mean Visual Ratings at Harvest for 2003/04 Season

All ratings for the whole plot assessed prior to harvest.

3 = Excellent


2 = Good

1 = Poor

Graph 1 - Lettuce Head Size At Harvest (2002/03)

At p<0.05, there were no statistically significant differences between treatments according to analysis of variance test.

Graph 2 - Lettuce Head Weight At Harvest (2002/03)

NO.	TREATMENT (Rate/ha)		h Head ht (kg)
1	Control	0.95	abcde
2	Beneficial micro-organisms	0.88	ab
3	Bacillus subtilis A	0.94	abcd
4	Compost tea program	1.04	de
5	Trichoderma program A	0.90	ab
6	Trichoderma program B	0.88	а
7	Bacillus subtilis B	0.90	ab
8	<i>Trichoderma</i> program C	0.91	abc
9	<i>Trichoderma</i> program D	0.88	ab
10	Worm castings A	1.05	е
11	Worm castings B	0.95	bcde
12	<i>Trichoderma</i> program E	0.91	abc
13	Biocontrol mixture	1.01	cde
14	14 Sumisclex		abcd
	P value		
	LSD	0.108	

Table 6 - Mean Yield Assessment at Harvest (2002/03)

Means within columns followed by the same letter are not significantly different at the 5% level according to Least Significant Difference (LSD) test.

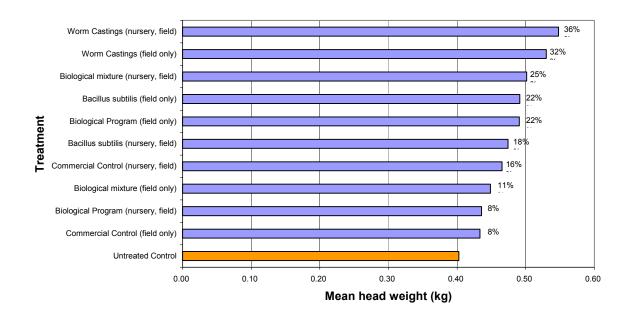

NO.	TREATMENT (Rate/ha)		Head nt (kg)
1	Untreated Control	0.40	а
2	Biological Program (field only)	0.49	bcd
3	Biological Program (nursery, field)	0.44	ab
4	Worm Castings (field only)	0.53	cd
5	Worm Castings (nursery, field)	0.55	d
6	Bacillus subtilis (field only)	0.49	bcd
7	Bacillus subtilis (nursery, field)	0.47	abcd
8	Biocontrol mixture (field only)	0.45	ab
9	Biocontrol mixture (nursery, field)	0.50	bcd
10	Commercial Control (field only)	0.43	ab
11	Commercial Control (nursery, field)	0.47	abc
P value		0.0081	
LSD		0.074	

Table 7 - Mean Yield Assessment at Harvest (2003/04)

Means within columns followed by the same letter are not significantly different at the 5% level according to Least Significant Difference (LSD) test.

Graph 3 - Lettuce Head Weight at Harvest (2003/04)

Percentage increases over untreated control yields are shown for each treatment.

Discussion

Assessments at harvest showed some clear differences between plots. Visual differences in crop vigour were most obvious in the 2002/03 season. The crop looked particularly good, and season conditions were ideally suited to the variety (Magnum). In 2003/04, a different variety (Target) was planted. This was grown because the bulk of commercial sowings at the time were also Target. However, the 2003/04 growing season was relatively cool and Target is a warm climate variety. Target crops generally did not perform well. At harvest, the trial crop was average and most plants were not forming big hearts. The difference in performance of the two varieties is obvious with a comparison of average yields between seasons.

In the 2002/03 trial, visual differences in crop vigour (Table 4) were more obvious and corresponded with yield measurements (Table 6). Plots treated with the compost tea program and both types of worm castings looked good in the paddock, and this was confirmed with the increased yields from these plots (Table 6). The biocontrol mixture treatment also resulted in higher yields compared to other treatments.

There were no significant differences in head diameter of lettuce from difference plots, although lettuce treated with the compost tea program were slightly larger (Graph 1). Given the considerable effort involved in measuring head diameters, it was decided to just use a visual rating score for head size assessments in 2003/04.

Subjective ratings for firmness and shape (Table 4) indicated that lettuce from the plots treated with the compost tea program and both types of worm castings were of excellent quality in the 2002/03 season. Because of the overall high quality of the crop, quality differences in the crop were less marked than in the 2003/04 season. Similar trends in quality were seen in the second season, where the best quality lettuce were harvested from plots treated with worm castings and the biological program based on compost tea (Table 5). In the second season, it was clear that the plots treated with worm castings also matured earlier than other plots.

Dry weight root:shoot ratios for the 2003/04 season, showed that incorporation of worm castings in the transplant media improved the development of root biomass. Improved root development may have assisted crop growth because the plants that were treated with worm castings in both the nursery and in the field were the highest yielding in the trial. Average yields were 35% higher than yields from untreated control plots.

Nutrient uptake results were surprising in that nutrient levels in plots treated with worm castings were not any higher than other plots. Nitrogen levels in plants treated with worm castings were lower than in untreated control plants. This result indicates that the improved growth observed in plants treated with worm castings was not related to increased nutrition from the worm castings. Further study of nutrient uptake in other crops treated with worm castings would be beneficial to gain an understanding of how yield increases are being achieved. Are the worm castings improving the nutrient balance within the plant or are the worm castings stimulating microbial interactions in the soil that are beneficial to the plant?

Lettuce Pot Trials

Materials and Methods

Site Details

Grower	Department of Primary Industries
Locations	Department of Primary Industries Glasshouse (2002/03) and Serve-Ag Research Compound (2003/04)
Potting Mix	Premium grade with osmocote (Horticultural Supplies) mixed in ratio of 70:30 with local alluvial sandy loam sourced from garden supply centre.
Сгор	Iceberg Lettuce
Variety	Magnum (2002/03) and Target (2003/04)
Trial Design	Randomised complete block
Replicates	3 (2002/03) and 4 (2003/04)
Plot Size	One rectangular basket containing 6 lettuces planted in 20 L of soil
Plant Spacing	15 cm
Row Spacing	15 cm

Inoculum culture

Sclerotinia minor (Serve-Ag Research culture) was grown on moist barley grains. 15 g of barley grains per basket were raked through the surface of the potting soil in 2002/03 trials. 2002/03 disease incidence assessments indicated that the level of inoculum was insufficient to get consistent disease pressure. A number of plots had no disease present, including the untreated control. Several plots had quite severe disease infestation but this could have been because only 15 g of inoculated barley grains were raked through the potting mix, and there may have been uneven distribution of disease.

In 2003/04, the amount of inoculum was increased to 25 g of barley grains per plot to ensure more even disease pressure.

Chronology of Events for 2002/03 Trial

DATE	DAYS AFTER SOWING	EVENT
02/10/02	0	Lettuce trays sown. Media-incorporation of treatments 9, 10, 11. Lettuce trays in shade house to prevent thermo-dormancy.
04/10/02	2	Lettuce trays moved to outside bay. Treatments 2, 3, 7, 8, 12, 13 applied as tray drenches with watering can (Photograph 1).
06/11/02	35	Treatments 2, 7, 8 applied with a watering can.
11/11/02	40	Trial baskets filled with 70:30 mix of potting soil to alluvial soil. Trial baskets marked with coloured tape. Each basket inoculated with 15 g of barley grains with cultured <i>Sclerotinia minor</i> , and watered in.
12/11/02	41	Treatments 4, 5, 6, 10, 11 applied to soil in baskets.
13/11/02	42	Treatments 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14 applied as drench to transplants with watering can. Transplants planted into baskets by hand.
26/11/02	55	Pirimor applied for aphid control. Rate of 500 g/ha applied with water rate of 280 L/ha using TX12 nozzles at 300 kPa.
29/11/02	58	Treatments 2, 3, 4, 5, 6, 7, 14 applied.
05/12/02	64	Vigour and disease assessment.
06/12/02	65	Treatments 2, 4, 5, 6 applied.
12/12/02	71	Treatments 2, 3, 4, 5, 6, 7, 8, 14 applied.
19/12/02	78	Treatments 2, 4, 5, 6, 7, 12, 13 applied.
20/12/02	79	Vigour assessment. Disease assessment. (Photographs 7-11). Baskets emptied and cleaned.

Chronology of Events for 2003/04 Trial

DATE	DAYS AFTER SOWING	EVENT
12/12/2003	0	Sowing. Treatment 5 incorporated into plug media. Trays moved to germination room.
15/12/2003	3	Treatments 3, 7, 9 applied as drench to trays moved to outside bays.
08/01/2004	27	Trial baskets filled with 70:30 mix of potting soil to alluvial soil. Trial baskets marked with coloured tape. Each basket inoculated with 25 g of barley grains with cultured <i>Sclerotinia minor</i> , and watered in. Treatments 4 & 5 incorporated into growing baskets by hand.
12/01/2004	31	Transplanting. Treatments 2, 3, 6, 7, 8, 9, 10, 11 applied to transplants prior to hand transplanting.
20/01/2004	8	Treatments 2 & 3 applied (270 L/ha water).
27/01/2004	15	Final assessment.

The following parameters were assessed:

1. PLOT VIGOUR ASSESSMENT

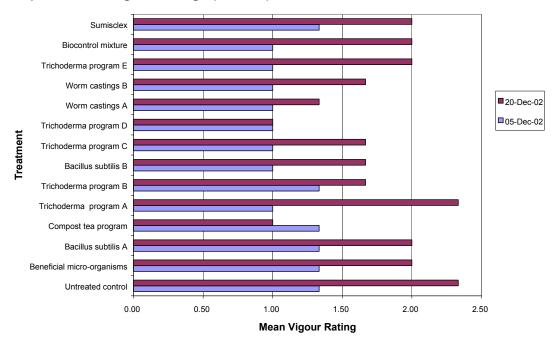
TIMING -	5/12/02, 20/12/02
SAMPLE SIZE -	Whole plot
METHOD -	Visual rating of crop vigour
RATING SCALE -	1 = excellent vigour 2 = good vigour 3 = poor vigour
SUMMARISED RESULTS -	Graph 4
COMPLETE DATA -	Appendix iii
PHOTOGRAPHS -	Photographs 7 -11

2. DISEASE ASSESSMENT

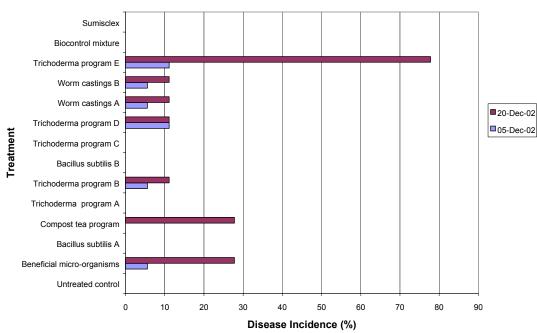
DATE -	5/12/02, 20/12/02, 27/01/04
SAMPLE SIZE -	Whole plot
METHOD -	The number of lettuce with signs of <i>Sclerotinia</i> disease were counted and recorded.
SUMMARISED RESULTS -	Graph 5, Table 8
COMPLETE DATA -	Appendix iii
PHOTOGRAPHS -	Photographs 7-12

3. CROP PHYTOTOXICITY ASSESSMENT

SAMPLE SIZE - Whole plot


METHOD - Visual observation of crop.

SUMMARISED RESULTS - There were no signs of phytoxicity observed in any plots. All treatments were safe to the lettuce.


Photograph 7 - View of lettuce in glasshouse trial at final assessment (2002/03)

Results

Graph 4 - Mean Vigour Ratings (2002/03)

Photograph 8 - 2002/03 untreated control plots at harvest assessment (mean vigour rating = 2.33)

Photograph 9 - 2002/03 commercial control plots treated with Sumisclex at harvest assessment (mean vigour rating = 2.00)

Photograph 10 – 2002/03 lettuce treated with compost tea program (mean vigour rating = 1.33)

Photograph 11 – 2002/03 diseased lettuce at harvest. This treatment had the highest mean disease incidence of 78%

Lettuce Pot Trials (Cont.)

Table 8 - Mean percentage of live plants remaining at 2 weeks after transplanting
(2003/04)

NO.	TREATMENT (Rate/ha)	% LIVE PLANTS REMAINING
1	Untreated Control	0
2	Biological Program (field only)	8
3	Biological Program (nursery, field)	0
4	Worm Castings (field only)	4
5	Worm Castings (nursery, field)	0
6	Bacillus Subtilis (field only)	0
7	Bacillus Subtilis (nursery, field)	0
8	Biocontrol mixture (field only)	0
9	Biocontrol mixture (nursery, field)	0
10	Commercial Control (field only)	0
11	Commercial Control (nursery, field)	100

Photograph 12 - 2003/04 pot trial at final assessment. There was 100% survival of plants treated with Sumisclex and close to 100% mortality for all biological treatments and the untreated control.

Lettuce Pot Trials (Cont.)

Discussion

2002/03 Trial

Lettuce treated with *Trichoderma* program D had excellent vigour at both assessments. Treatment with the compost tea program and worm castings A also resulted in excellent quality lettuce.

Disease incidence assessments indicated that the level of inoculum was insufficient to get consistent disease pressure. A number of plots had no disease present, including the untreated control. Several plots had quite severe disease infestation but this could have been because only 15 g of inoculated barley grains were raked through the potting mix, and there may have been uneven distribution of disease.

2003/04 Trial

There was much greater disease pressure in this pot trial. In addition to an increased number of inoculated barley grains, it was thought that the potency of the *Sclerotinia minor* strain was higher. Nearly all plants except those treated with Sumisclex were dead within 2 weeks of transplanting. There was no mortality of plants treated with Sumisclex.

This result indicates that none of the biological products could compare to Sumisclex for disease management under high disease pressure. In order to better understand disease thresholds for efficacy of different biological compounds, it would be necessary to do screening trials with a range of inoculum dosages.

This type of study was beyond the scope of this project. Whether or not it is warranted is also debatable because it is usually quite hard to quantify disease pressure within a paddock, given the spatial variability of soil-borne diseases like *Sclerotinia*.

Broccoli Field Trial

Methods and Materials

A field broccoli trial was conducted in the summer of 2003/04. The trial was conducted at Forthside Vegetable Research Station The broccoli trial followed on from screening work done in the previous season. The emphasis on trial design was to detect treatment effects so the trial had 7 replicates so that treatment differences could be better observed as real effects.

For each of the treatments listed below, one treatment regime included nursery application and one regime included nursery and field application.

NO.	TREATMENT	PRODUCTS IN TREATMENT (MANUFACTURER)
1	Control	Untreated Control
2	Biological Program (field only)	Mend Compost Tea + Aloe Tech + Bio-N + Bio-P + Bio-Plex + Nutri-Kelp
3	Biological Program (nursery, field)	+ B-sub + Fulvic 1400 + Shuttle Seven + Brix Master + Veg-Tech Triple Ten + Tonic Tech + Cloak Spray Oil (Nutri-Tech Solutions)
4	Worm Castings (field only)	Bioverm
5	Worm Castings (nursery, field)	(Vermitech)
6	<i>Bacillus subtilis</i> (field only)	Companion
7	<i>Bacillus subtilis</i> (nursery, field)	(Spray Gro)
8	Biocontrol mixture (field only)	Superzyme
9	Biocontrol mixture (nursery, field)	(Zadco)
10	Commercial Control (field only)	Sumisclex
11	Commercial Control (nursery, field)	(Sumitomo)

Products evaluated in 2003/04 Trial

Trials were sown at Hills Transplants using a commercial seeding line. Trays were marked with coloured tape to indicate different treatments. After sowing, trays were placed in a germination room for 2 days and then moved to outside bays (Photograph 13).

Photograph 13 - Broccoli seedlings growing in outside bays at Hills Transplant Nursery

Prior to transplanting, seedlings were assessed for growth development in the nursery. Visual observations of root development were made, and a photograph was taken of 10 representative seedlings from each treatment (eg. Photograph 14). No visual differences were observed between plants.

Photograph 14 - Untreated control transplant plugs prior to transplanting

Photograph 15 - Broccoli field site on day of transplanting (22/01/04)

A sub-sample of 100 seedlings was randomly selected from the planting trays. Leaves were cut off at soil level with a razor blade. Root plugs and leaves were dried separately in a drying oven for one week to determine dry matter root:shoot ratios. The assumption was that the volume of each root plug was identical and any differences in the mass of root plugs were attributable to additional root development. Dry weight root:shoot ratios are given in Table 9. None of the treatments improved development of roots compared to the untreated control.

Seedlings were transplanted by hand to the field site (Photograph 15). No pre-planting fertiliser was applied because the aim of the trial was to grow the plants under base conditions so that additional benefits resulting from microbial interactions could be detected. A soil test (Appendix i) showed that the trial site had reasonable fertility. The trial was top dressed with Nitrophoska Blue Special at 4 and 6 weeks after transplanting. Fertiliser recommendations were made by a senior district agronomist and he viewed the trial at regular intervals.

Treatments were applied as per application schedule recommended by product manufacturers. Sprays were applied using a carbon dioxide pressurised 1.5 m boom sprayer. Three TeeJet TX12 nozzles spaced at 50 cm were used. Application volume was 250 L/ha and the pressure was 225 kPa.

Grower	Forthside Vegetable Research Station	
Location	Forth, North West Tasmania	
Grid Reference	55GDQ378383	
Soil Type	Ferrosol	
Сгор	Broccoli	
Variety	Marathon (grown for processing and fresh market)	
Trial Design	Completely randomised design	
Replicates	7	
Plot Size	6 m x 1 bed (1.2 m)	
Plant Spacing	37.5 cm	
Row Spacing	40 cm	
Transplanting date	22/01/04	

Site Details for Broccoli Field Trial

DATE	DAYS AFTER SOWING [#]	EVENT
12/12/03	0	Sowing. Treatment 5 incorporated into plug media. Trays moved to germination room.
15/12/03	3	Treatments 3, 7, 9 applied as drench to trays moved to outside bays.
19/01/04	38	Treatments 4 & 5 incorporated into field plots using a rake.
22/01/04	41	Transplanting. Treatments 2, 3, 6, 7, 8, 9, 10, 11 applied.
	DAYS AFTER TRANSPLANTIN G	
27/01/04	5	Treatment 2, 3 applied (270 L/ha water).
3/02/04	12	White blister and aphids observed in the trial. Treatments 2 & 3 applied. Pirimor 1 kg/ha and Ridomil 2.5 kg/ha applied with 270 L/ha water.
10/02/04	19	Treatments 2, 3, 6, 7 applied (270 L/ha water).
11/02/04	20	Nitrophoska Blue Special applied at 125 kg/ha. Spread by hand and watered in.
17/02/04	26	Treatments 2 & 3 applied (270 L/ha water).
19/02/04	28	Continued white blister pressure. Diamond back moth (DBM) larvae observed in trial. Ridomil 2.5 kg/ha and 2 L/ha Dipel applied with 270 L/ha water.
24/02/04	33	Treatments 2, 3, 6, 7, 8, 9 applied (270 L/ha water). Pirimor 1 kg/ha applied (270 L/ha water).
25/02/04	34	Nitrophoska Blue Special applied at 125 kg/ha. Spread by hand and watered in.
02/03/04	40	Treatments 2 & 3 applied (270 L/ha water).
04/03/04	42	Continued DBM pressure. Avatar 280 g/ha and Agral 40 mL/100L applied with 270 L/ha water. Nutrient uptake sampling and analysis.
09/03/04	47	Treatments 2*, 3*, 6, 7 applied (215 L/ha water).
16/03/04	54	Treatments 2*, 3*, 6, 7 applied (400 L/ha).
30/03/04	68	Treatments 2*, 3*, 6, 7 applied (400 L/ha).
19/04/04	88	Harvest - first cut commenced.
20/04/04	89	Harvest - first cut finished.
23/04/04	92	Harvest - second cut.

Chronology of Events

A previous trial was sown on 5/11/03. However, these plants were accidentally sprayed by nursery staff with a Kocide, Mancozeb and Bravo mix. The trial had to be abandoned and a new trial was commenced.

* 100 g additional VAM was added to the 10 L mix for Treatments 2 and 3. This was advised by Nutri-Tech Solutions in order to offset the effect of Ridomil applications for white blister control.

The following parameters were assessed in the field:

1. NUTRIENT UPTAKE ASSESSMENT

TIMING -	6 weeks after transplanting
SAMPLE SIZE -	10 leaves per replicate plot. Replicates were bulked for treatment samples.
METHOD -	The youngest fully expanded leaf was collected at 7.30 am. Samples were stored in an Eski and were processed the same day in the Serve-Ag Analytical Services Laboratory using commercial methodology.
SUMMARISED RESULTS -	Table 10

2. PLOT VIGOUR ASSESSMENT

TIMING -	Throughout crop growth
SAMPLE SIZE -	Whole plot.
METHOD -	Visual rating of crop vigour.
SUMMARISED RESULTS -	In the earlier stages of crop growth, it appeared that the plots treated with worm castings were growing with larger frames. However, as the crop matured it was very difficult to distinguish any differences in vigour between treatments.

3. YIELD ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	Entire plot
METHOD -	Heads were weighed on field scales and weights recorded (Photographs 16 & 17)
SUMMARISED RESULTS -	Graph 6, Tables 11& 12
COMPLETE DATA -	Appendix iii
STATISTICAL ANALYSES -	Appendix iv Analysis of variance was used to determine significant differences at p<0.05. There were significant differences between treatments.

4. WHITE BLISTER ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	Entire plot
METHOD -	All heads were observed for presence of white blister on the florets.
SUMMARISED RESULTS -	Table 13

5. HOLLOW STEM ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	Entire plot
METHOD -	All heads were observed for presence of hollow stem
SUMMARISED RESULTS -	Table 14

6. FLORET RECOVERY ASSESSMENT

TIMING -	Harvest
SAMPLE SIZE -	Twenty heads randomly selected across all replicates.
METHOD -	Processing broccoli field officers advised on typical cutting pattern of floret trimmers in the processing factory. Broccoli heads were trimmed by hand to simulate operation of trimming knives in the factory. The weight of head was recorded and the weight of florets trimmed was recorded. The percentage recovery was calculated as the weight of the whole head minus the 'waste' stem portion.
SUMMARISED RESULTS -	Table 15
COMPLETE DATA -	Appendix iii

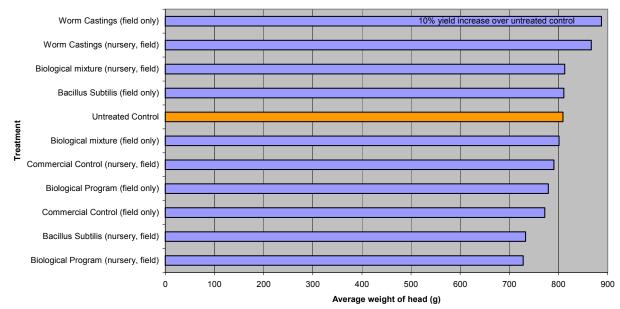
Results

Table 9 - Broccoli dry weight root:shoot ratios

Treatment	Root:Shoot Ratio
Untreated Control	4.91
Biological Program	4.74
Worm castings	4.44
Bacillus subtillus	4.15
Biocontrol mixture	4.85

Table 10 - Nutrient uptake in broccoli crop 6 weeks after transplanting

No.	TREATMENT	NO3	Р	К	Ca	Mg	S
1	Untreated control	3150	229	2639	848	167	589
3	Biological program	3260	236	2449	853	164	605
5	Worm castings	2620	205	2163	918	158	508
7	Bacillus subtilis	3380	213	2239	757	146	553
9	Biocontrol mixture	2460	196	2552	864	158	558
11	Commercial control	3410	230	2443	880	170	615


No.	TREATMENT	Zn	В	Cu	Fe	Mn	Na	Мо
1	Untreated control	2.27	0.55	0.37	2.42	0.39	242	0.033
3	Biological program	2.44	0.44	0.74	2.48	0.38	257	0.034
5	Worm castings	1.88	0.31	0.39	2.05	0.31	279	0.025
7	Bacillus subtilis	2.38	0.32	0.37	2.24	0.35	236	0.029
9	Biocontrol mixture	1.89	0.48	0.47	2.16	0.31	254	0.028
11	Commercial control	2.34	0.45	0.36	2.58	0.37	246	0.033

Photograph 16 - View of trial area at harvest

Photograph 17 - Individual heads from every plant were weighed for head weight assessments

Graph 6 - Mean head weights of broccoli harvested from trial (both cuts)

Table 11 - Mean total yield from each plot (both cuts)

No.	Treatment	Total Yield	(g)
10	Commercial Control (field only)	13467	а
9	Biological mixture (nursery, field)	13933	а
1	Untreated Control	13946	а
3	Biological Program (nursery, field)	13983	а
7	Bacillus subtilis (nursery, field)	14060	а
8	Biological mixture (field only)	14115	а
11	Commercial Control (nursery, field)	14240	а
2	Biological Program (field only)	14406	а
6	Bacillus subtilis (field only)	16374	ab
5	Worm Castings (nursery, field)	17937	b
4	Worm Castings (field only)	18007	b
	P value	0.0186	
	LSD	3051	

No.	Treatment	% Harvestable
8	Biocontrol mixture (field only)	53%
2	Biological Program (field only)	54%
9	Biocontrol mixture (nursery, field)	54%
1	Untreated Control	54%
11	Commercial Control (nursery, field)	55%
10	Commercial Control (field only)	56%
7	Bacillus subtilis (nursery, field)	57%
3	Biological Program (nursery, field)	58%
6	Bacillus subtilis (field only)	63%
4	Worm Castings (field only)	63%
5	Worm Castings (nursery, field)	64%

Table 12 - Mean percentage of plot harvestable on first cut

Table 13 - Mean percentage of harvested heads with signs of white blister (both cuts)

No.	Treatment	Total % with white blister (±SE)
7	Bacillus subtilis (nursery, field)	22 (±9)
3	Biological Program (nursery, field)	31 (±15)
10	Commercial Control (field only)	31 (±13)
8	Biocontrol mixture (field only)	32 (±9)
11	Commercial Control (nursery, field)	32 (±15)
6	Bacillus subtilis (field only)	34 (±13)
1	Untreated Control	35 (±12)
9	Biocontrol mixture (nursery, field)	36 (±8)
2	Biological Program (field only)	41 (±8)
5	Worm Castings (nursery, field)	43 (±16)
4	Worm Castings (field only)	44 (±12)

No.	Treatment	Total % with hollow stem (±SE)
6	Bacillus subtilis (field only)	44 (±8)
7	Bacillus subtilis (nursery, field)	52 (±8)
10	Commercial Control (field only)	54 (±5)
2	Biological Program (field only)	54 (±8)
9	Biocontrol mixture (nursery, field)	57 (±7)
3	Biological Program (nursery, field)	59 (±3)
8	Biocontrol mixture (field only)	59 (±7)
5	Worm Castings (nursery, field)	59 (±10)
11	Commercial Control (nursery, field)	61 (±7)
1	Untreated Control	65 (±5)
4	Worm Castings (field only)	65 (±4)

Table 14 - Mean percentage of harvested heads with hollow stem (both cuts)

Table 15 - Mean percentage floret recovery

No.	Treatment	Total % floret recovery (±SE)
6	Bacillus subtilis (field only)	72 (±0.61)
2	Biological Program (field only)	72 (±1.33)
7	Bacillus subtilis (nursery, field)	73 (±0.58)
5	Worm Castings (nursery, field)	73 (±0.91)
3	Biological Program (nursery, field)	74 (±0.94)
11	Commercial Control (nursery, field)	75 (±0.88)
4	Worm Castings (field only)	75 (±0.75)
10	Commercial Control (field only)	75 (±0.70)
1	Untreated Control	76 (±1.00)
8	Biocontrol mixture (field only)	76 (±0.82)
9	Biocontrol mixture (nursery, field)	76 (±0.71)

Discussion

Results from all aspects of the trial are consistent. Early in crop growth, plots treated with worm castings had obviously larger frames; however, differences in vegetative vigour were obscured as the crop matured. Incorporation of worm castings improved average head size by 10% and resulted in a 10% increase in percentage of heads that were harvestable on the first cut. The total amount of harvestable crop was significantly higher from plots treated with worm castings. Despite the growth improvement, there was no increase in nutrient uptake compared to the untreated control. N levels in plants treated with worm castings were lower than in untreated control plants.

There was a 10% increase in white blister incidence on heads grown in plots treated with worm castings. This relates to degree of crop maturity at harvest. The trial was grown in an area known for high white blister pressure. Applications of Ridomil and Bravo kept the crop relatively clean during growth crop. Four days before the first cut, there were no signs of white blister development on the florets. However, over the weekend, there were strong winds and moist conditions. It was ideal conditions for an inoculum source to be blown in and develop in the crop prior to harvest. Disease development was most obvious in mature heads, and there were more mature heads in plots treated with worm castings. Other growers in the area also noted a marked increase in white blister development over the same period. When the trial was harvested, there was considerably more white blister in plants exposed to north-westerly prevailing winds. In the south-east corner of the trial area, there was very limited white blister development.

Results for hollow stem incidence do not appear to be related to treatments. Treatment differences for floret recovery were negligible.

Broccoli Pot Trial

In the summer of 2003/04, a pot trial was established to determine whether any of the treatments resulted in improved management of *Sclerotinia minor* disease in broccoli. Materials and Methods for establishment of this trial were the same as described for the 2003/04 lettuce pot trial. Four broccoli plants were grown in each planting basket.

The *Sclerotinia minor* strain used was aggressive on lettuce but proved to have no impact on broccoli plants (Photograph 18).

Treatment applications were made as per field trial regimes until one month after transplanting. At this point, the trial was abandoned because no disease was apparent, and the plants were under continued pressure from diamond back moth grubs.

Photograph 18 - Broccoli pot trial 2 weeks after transplanting.

General Discussion

No treatments caused any crop phytotoxicity at any stage of growth in lettuce or broccoli plants. No treatments resulted in any obvious quality defects. Generally, differences in subjective quality measurements were only relative, and all product harvested from the field trials was of acceptable commercial quality.

In the trials conducted as part of this project, the only product that consistently improved yields in all field trials in both seasons, in both lettuce and broccoli, was worm castings. This is not to say that other products might not perform very well under different growing conditions. Yield improvements in plots treated with worm castings were 10% or higher in both crops.

Nursery applications

In the 2003/04 trials, efforts were made to determine whether treatment benefits were increased with nursery application as well as field application. Was the use of microbial inoculants in the nursery improving root development and the crops' potential for yield improvements? Data to address this question was inconsistent. No treatment consistently promoted root growth in transplant plug. Yield and quality results showed no pattern in beneficial effects from nursery application of microbial inoculants.

The trial work in the nursery highlighted some critical considerations for the use of microbial inoculants in the nursery. In the 2003/04 season, trials were delayed by 6 weeks because the first sowing of trial plants was accidentally sprayed with a mixture of Kocide/Bravo/Mancozeb the day before the first plantings were due to commence. This spray mix would have killed any beneficial fungi and bacteria that were established in the transplant plugs. However, this spray mix was also essential for ensuring that all transplants left the nursery disease free and there was no potential for spread of disease from nursery plants.

Typically transplant nurseries are providing all transplants for a district. It is critical that the nursery has excellent disease management strategies in place to prevent spread of disease within an area. A topical example is management of white blister in brassica transplants to prevent district outbreaks. Given that there are currently no biofungicides registered with the APVMA, this means few transplant growers are prepared to take the risk to use products with unproven claims. A further issue with using biological products in transplant nurseries is compatibility with necessary synthetic chemical spray programs. The majority of beneficial microbial products are not compatible with synthetic chemicals. In many cases, no information on product compatibility is given on the labels of biological products.

Development of biologicals

Undoubtedly, there is considerable interest in the application of various microbial products in agriculture. The scope of this project only allowed for limited evaluation of a few commercially available products. There are lot of other available products that could not be included in trials.

Use of these products in conventional agriculture requires a considered approach. Growers must be prepared to evaluate how these products perform in their own production systems. This is a different approach to the use of synthetic agricultural chemicals, which are formulated to perform across a much wider range of growing conditions. The mode of action of most agricultural chemicals is to target specific biochemical pathways within target organisms. The mode of action of most biologicals is to target interactions between organisms and their growing environment. Understandably, the interactions are more complicated and variability in outcomes is greater.

Recommendations to Growers

When growers purchase conventional agricultural chemicals, they can have some confidence that the product will perform according to product claims because the product has been through a stringent registration process with the Australian Pesticides and Veterinary Medicines Authority.

The only way that growers can really have confidence in the claims made by biological product manufacturers is to evaluate the products themselves and see how they perform under the growing conditions on their own farm. There is an incredible diversity of soil microflora across cropping environments. It is to be expected that different introduced fungi and bacteria will interact differently with different soil types, crops, climates and cultivation methods. For this reason, it is hard for manufacturers of biological products to produce data demonstrating consistent performance across cropping regimes. If manufacturers are able to make claims about product efficacy over a wide range of growing conditions, then they should consider applying for product registration.

For all on-farm evaluations of biological products, it is important to have an area of the paddock for comparison. There should always be a representative part of the paddock that is treated as per normal practice for comparison with the biological regime.

If manufacturers of biological products are able to provide good information, it makes it a lot easier for growers to make informed choices. If product manufacturers cannot provide detailed information about their product, it is justified for growers to be sceptical.

A basic checklist that growers can use to assess the merits of different biological products on the market could include things such as:

1. Label

- What is in the product? Often labels state "contains micro-organisms" but strains are not named.
- What are product claims? One product is unlikely to be able to do everything for the crop.
- What is product compatibility? This important information is missing from most labels of biological products.
- Are rates and use protocols clearly stated? Often label descriptions are too general or too complicated. Is the regime time consuming? One treatment regime in this project involved mixing 5 products on a weekly basis.
- How comprehensive is the label? There is a minimum amount of information that should be on a label for occupational health and safety purposes. One product supplied for use in this project was sent in a plastic bottle without a label.

2. Packaging

- What are product claims? One product is unlikely to be able to do everything for the crop.
- Design of packaging. How is the product sealed? Will packaging withstand paddock use?

3. Storage

- Does it need to be stored in refrigeration or require refrigeration after opening?
- What is the shelf life?

4. Formulation

- Does the product dissolve readily?
- What is the consistency and colour of the product mix? Will it leave crop residues? A number of biologicals evaluated in this project did not dissolve readily or they left visible residues on the crop until the next irrigation.

Technology Transfer

Forthside Vegetable Research Station Field Day presentations – 2002 and 2003

'Worm poo works' – article in Good Fruit and Vegetables magazine (May 2003)

Agricultural Research and Advisory Committee oral presentations - 2002 and 2003

Paper (oral) at 'Organic Futures for Australia Conference', Adelaide, 2003

Some data from this project was presented at World Potato Congress, China, 2004, as part of oral presentation on 'Environmentally friendly crop protectants'

Appendices

TEST	RESULT			
pH - water	6.8			
pH - CaCl	6			
Organic Carbon (C)	2.3%			
Nitrate Nitrogen (NO3)	10 mg/kg			
Ammonium (NH4)	3 mg/kg			
Phosphorus - Colwell (P)	89 mg/kg			
P Buffer Index - PBI	660			
Potassium - Colwell (K)	214 mg/kg			
Sulphur - KCI (S)	5.9 mg/kg			
Electrical Conductivity (EC)	0.05 dS/m			
EC of saturated extract	0.5 dS/m			
Chloride (CI)	15 mg/kg			
Cation Exchange Capacity	14.061 meq/100			
Calcium (Ca)	9.75 meq/100 (69%)			
Magnesium (Mg)	3.558 meq/100 (25%)			
Potassium (K)	0.549 meq/100 (4%)			
Sodium (Na)	0.206 meq/100 (1%)			
Calcium to Magnesium Ratio	2.74			
Potassium to Magnesium Ratio	0.154			
Zinc - DTPA (Zn)	0.51 mg/kg			
Copper - DTPA (Cu)	1.7 mg/kg			
Manganese - DTPA (Mn)	51 mg/kg			
Iron - DTPA (Fe)	16 mg/kg			
Boron (B)	1.1 mg/kg			

Appendix i - 2003/04 Lettuce and Broccoli Trial Site Soil Test

Appendix ii – Trial Details

Trial Plans

Trial Plans - 2002/03

Field trial was set out using a completely randomised block design as below. $\ensuremath{\overline{\mathsf{N}}}\xspace{\mathsf{N}}$

3	11	4	2	7	13	14	8	9	1	5	10	6	12	Block 4
10	8	3	1	5	11	6	13	2	9	12	7	4	14	Block 3
2	4	13	9	8	12	1	14	11	3	10	5	7	6	Block 2
5	9	10	12	14	7	6	4	3	2	11	13	8	1	Block 1

Different beds are shown in different colours. There were six 6 m plots per bed.

In the glasshouse trial, baskets were randomly arranged on 4 benches. Placement of baskets varied, depending on how they were moved for application of treatments and assessments.

Trial Plans - 2003/04

Field trials were set out using a completely randomised design as below. $\mathbb{N}\mathbb{N}$

1	7	2	1	6	3	7	10	11	6	11	4	8
2	1	8	4	9	2	8	1	4	5	7	1	6
3	4	5	2	8	4	10	2	9	3	6	5	10
4	8	11	9	10	6	5	8	1	4	10	7	11
5	11	7	5	11	7	3	11	3	5	8	2	9
6	9	6	10	3	1	9	10	7	2	9	3	

Pot trials were set out using a randomised complete block design as below. $\rightarrow N$

5	8	10	1	4	9	3	6	7	11	2	Block 1
6	2	3	7	11	5	10	9	8	1	4	Block 2
9	6	5	2	1	8	4	7	11	10	3	Block 3
8	3	11	4	10	7	6	2	9	5	1	Block 4

Appendix ii - Trial Details (Cont.)

Treatment Application Details - 2002/03

At sowing

		TREATMENT	OMPONENT	APPLICATION
NO.	TREATMENT	Product	Activation Required	SCHEDULE
1	Control			None
2	Beneficial micro- organisms	Effective Micro- organisms 1 (EM1)	Ν	20 mL/10L drenched over sown plugs
3	Bacillus subtilis A	Companion	Ν	10.5mL/10L drenched over plugs
4	Compost tea program	None	Ν	None
5	<i>Trichoderma</i> program A	None	Ν	None
6	<i>Trichoderma</i> program B	None	Ν	None
7	Bacillus subtilis B	acillus subtilis B BC 403 N		40 g/kg seed at planting – mix with enough water to coat all seeds (actual amount used = 0.8 g)
8	<i>Trichoderma</i> program C	BC 702/703	Ν	100 g BC702/703 + 10 g Acadian in enough water to coat all seeds (actual amount BC 702/703= 0.2 g +)
9	<i>Trichoderma</i> program D	Trichodry 6S	Ν	Mix 1 kg with 0.5 cu m of growing media
10	Worm castings A	Bioverm	Ν	Incorporated as 5% of plug media
11	Worm castings B	Granular Bioverm	Ν	Incorporated as 2% of plug media
12	<i>Trichoderma</i> program E	Tri-D25	Ν	20 g/10L drenched over sown plugs
13	Biocontrol mixture	SuperZyme	Y Mix 3-4 hours before application.	20 g/10L drenched over sown plugs
14	Commercial control	Sumisclex	Ν	None

During transplant growth/soil amendment

		TREATMENT O	OMPONENT	APPLICATION
NO.	TREATMENT	Product	Activation Required	SCHEDULE (to seedlings or plots)
1	Control			None
2	Beneficial micro- organisms	EM 1	Ν	20 mL/10L drenched over seedlings
3	Bacillus subtilis A	Companion	Ν	None
4	Compost tea program	Mend Compost Tea + Aloe Tech	Y	400 mL Mend + 20mL Aloe Tech in 4 L per plot
5	<i>Trichoderma</i> program A	Nutrilife 4/20 + sugar	Y	400 mL 4/20 + 30 g sugar in 4 L per plot
6	<i>Trichoderma</i> program B	Trichoshield + B-Sub + Aloe Tech	Ν	10 g Trichshield + 10 mL B-sub + 20 mL Aloe Tech in 4 L per plot
7	Bacillus subtilis B	BC 403	Ν	2.5 g/ 10 L drench to seedlings
8	<i>Trichoderma</i> program C	BC 702/703	Ν	10 g/10 L drench to seedlings
9	<i>Trichoderma</i> program D	Trichodry 6S	Ν	None
10	Worm castings A	Bioverm	Ν	300 g/sq. m raked into plots
11	Worm castings B	Granular Bioverm	Ν	100 g/sq. m raked into plots
12	<i>Trichoderma</i> program E	Tri-D25	Ν	None
13	Biocontrol mixture	SuperZyme	Y	None
14	Commercial control	Sumisclex	Ν	None

At transplanting

		TREATMENT C	COMPONENT	APPLICATION
NO.	TREATMENT	Product	Activation Required	SCHEDULE (to seedlings or plots)
1	Control			None
2	Beneficial micro- organisms	EM 1	Ν	20 mL/10L drenched over seedlings
3	Bacillus subtilis A	Companion	Ν	10.5 mL/10 L drenched over plugs
4	Compost tea program	Bio-N + Bio-P + Seed Start	Ν	Soak seedlings in 2 mL Bio-N + 2 mL Bio-P + 5 mL Seed Start in 200 mL water
5	<i>Trichoderma</i> program A	Seed Start + Trichoshield	Ν	Soak seedlings in 5 mL Seed Start and 5 g Trichoshield in 200 mL water
6	<i>Trichoderma</i> program B	Nutrikelp + Mend Compost Tea	Ν	Soak seedlings in 1 g Nutrikelp and 10 mL Mend in 500 mL water
7	Bacillus subtilis B	BC 403	Ν	2.5 g/ 10 L drench to seedlings
8	<i>Trichoderma</i> program C	BC 702/703	Ν	10 g/10 L drench to seedlings
9	<i>Trichoderma</i> program D	Trichoflow 6S		100 g/100 L drench to transplants
10	Worm castings A	Bioverm	Ν	None
11	Worm castings B	Granular Bioverm	Ν	None
12	<i>Trichoderma</i> program E	Tri-D25	Y (soaked 4-6 hours before use)	20 g/10 L drenched over transplants
13	Biocontrol mixture	SuperZyme	Y (soaked 4-6 hours before use)	20 g/10 L drenched over transplants
14	Commercial control	Sumisclex	Ν	50 mL/10L

During crop growth

		TREATMENT C	OMPONENT	APPLICATION
NO.	TREATMENT	Product	Activation Required	RATE (schedule)
1	Control			None
2	Beneficial micro- organisms	EM 1	Ν	2 mL/ L (7 days)
3	Bacillus subtilis A	Companion	Ν	250 mL/100 L (14 days)
4	Compost tea program	Nutri-Kelp, Fulvic 1400, Aloe Tech, Tonic Tech	Ν	1 g Nutri-Kelp, 7 mL Fulvic 1400, 7 mL Aloe Tec, 2 mL Tonic Tech in 1L water per bed (14 days)
5	<i>Trichoderma</i> program A	Black Gold, Bio- Plex, Tonic Tech, Trichoshield, Aloe Tech, Humatech Liquid Humus.	Ν	7mL Black Gold, 1mL Bio-Plex, 2mL Tonic Tech in 1L water per bed (14 days) Alternate applications with 4 g Trichoshield, 5 mL Aloe Tech, 7 mL Humatech Liquid Humus in 1L water (14 days)
6	<i>Trichoderma</i> program B	Nutrikelp + Mend Compost Tea	Ν	5 mL Mend CFB, 1 mL Bio-Plex in 1 L water per bed (14 days). Alternate applications of 2 mL B-Sub, 5 mL Aloe Tech in 1 L water (14 days).
7	Bacillus subtilis B	BC 403	Ν	1 kg/ha as foliar spray (14 days)
8	<i>Trichoderma</i> program C	BC 702/703	Ν	2.5 kg/ha as banded foliar spray (monthly)
9	<i>Trichoderma</i> program D	Trichoflow 6S	Ν	100 g/100 L drench to transplants
10	Worm castings A	Bioverm	Ν	None
11	Worm castings B	Granular Bioverm	Ν	None
12	<i>Trichoderma</i> program E	Tri-D25	Y (soaked 4-6 hours before use)	1 kg /ha as foliar spray (6 weeks after planting)
13	Biocontrol mixture	SuperZyme	Y (soaked 4-6 hours before use)	1 kg /ha as foliar spray (6 weeks after planting)
14	Commercial control	Sumisclex		100 mL/100 L (14 days)

No.	Treatment	Nursery Treatment	Nursery Treatment Details	Paddock Treatment	Paddock Treatment Details
1	Untreated control	×		×	
2	Biological program	×		\checkmark	Transplanting drench as per seeding. For
			Plug media liquid drench after seeding – 10 L water:		foliar program see next page.
	Biological		30 mL Bio-N		
3	program	V	100 g Vam-Tech 50 mL Fulvic 1400 15 g Nutri-Kelp 50 mL Aloe-Tech 40 mL Shuttle Seven	v	
4	Worm castings	×		\checkmark	300 g/sq. m raked into plots = 2.16 kg
5	Worm castings	\checkmark	Incorporation as 5% of plug media	\checkmark	per plot.
6	Bacillus subtilis	×		\checkmark	10.5 mL /10L drenched over plugs
7	Bacillus subtilis	\checkmark	Plug media liquid drench after seeding.	\checkmark	at transplanting. 250 mL /100 L every 14 days.
8	Biocontrol mixture	x		\checkmark	20 g/10 L drenched over plugs at
9	Bioncontrol mixture	\checkmark	20 g/ 10 L drenched over sown plugs.	\checkmark	transplanting. 1 kg/ha as foliar spray 6 weeks after planting.
10	Commercial control	×		\checkmark	50 mL/10 L drenched over plugs at
11	Commercial control	\checkmark	Sumisclex drench applied	\checkmark	transplanting. 100 mL/100 L (14 days)

Treatment Application Details - 2003/04

Foliar program for Treatments 2 and 3 – 10 L recipe

Week No.	Lettuce	Broccoli							
	15 mL of Nuti	ri-Life Bio-Plex							
1	25 mL of Nu	tri-Life B-Sub							
I	100 mL of Aloe-Tech								
	60 mL of Fulvic 1400								
	100 mL of S	huttle Seven							
	100 mL of	Aloe-Tech							
2	250 mL of	MEND LCI							
2	100 mL of	Brixmaster							
	20 mL of Clo	oak Spray Oil							
	(*20mL Tonic Tech ad	dded to broccoli spray)							
	15 mL of Nutr	ri-Life Bio-Plex							
3	25 mL of Nu	tri-Life B-Sub							
5	100 mL of	Aloe-Tech							
	100 mL of Veg-	Tech Triple Ten							
	100 mL of	Brixmaster							
4	250 mL of	MEND LCI							
4	20 mL of ⁻	Tonic-Tech							
	20 mL of Cloak Spray Oil								
	100 mL of Veg-Tech Triple Ten	100 mL of Veg-Tech Triple Ten							
	10 g of Nutri-Kelp	15 mL Nutrilife Bio-Plex							
5	250 mL of MEND LCI	100 mL Aloe Tech							
	20 mL of Cloak Spray Oil	20 mL Tonic Tech							
		20 mL Cloak Spray oil							
	100 mL of Veg-Tech Triple Ten	100 mL Brixmaster							
	10 g of Nutri-Kelp	250 mL MEND LCI							
6	250 mL of MEND LCI	10 g Nutri-Kelp							
	20 mL of Cloak Spray Oil	20 mL Cloak Spray oil							
		20 mL Tonic Tech							
		100 mL of Veg-Tech Triple Ten							
	l ant annu annlis d'in 1875 de 7	15 mL Nutrilife Bio-Plex							
7, 8, 9	Last spray applied in Week 7. Recipe same as Week 6.	100 mL Aloe Tech							
		20 mL Tonic Tech							
		20 mL Cloak Spray oil							

Appendix iii - Complete Data

2002/03 Data

Field Trial – Harvest Assessment for Vigour

No.	Treatment	Rep	Vigour Rating
1	Control	1	1
		2	1 2
		4	1
		Mean	1.25
2	Beneficial micro-organisms	1	2
-	Deneneral intere erganiente	2	3
		3	
		4	2
		Mean	2.33
3	Bacillus subtilis A	1	2
		2	1
		3	1
		4	2
		Mean	1.50
4	Compost tea program	1	1
		2	1
		3	1
		4 Mean	1 1.00
5	Trichoderma program A	Mean 1	1.00
5	monouernia prograni A	2	1
		3	1
		4	1
		Mean	1.25
6	Trichoderma program B	1	1
		2	1
		3	2
		4	1
		Mean	1.25
7	Bacillus subtilis B	1	2
	-	2	1
	_	3	2
		4	2
_	Trick a de muse anno marca o	Mean	1.75
8	Trichoderma program C	1	1 2
		3	2
		4	1
		Mean	1.50
9	Trichoderma program D	1	1
		2	2
		3	2
		4	1
		Mean	1.50
10	Worm castings A	1	1
		2	1
	_	3	1
	_	4	4.00
11	Worm costings D	Mean	1.00
11	Worm castings B	1	1
	1	3	1
	1	4	1
		4 Mean	1.00
12	Trichoderma program E	1	1.00
	program E	2	1
		3	2
		4	1
		Mean	1.25
13	Biocontrol mixture	1	2
		2	
		3	2
		4	2
		Mean	2.00
14	Sumisclex	1	2
		2	1
		3	1
	1	4	1
		Mean	1.25

Field Trial - Harvest Assessment for Head Weight

No.	Treatment	Rep	Head 1	Head 2	Head 3	Head 4	Head 5	Head 6	Head 7	Head 8	Head 9	Head 10	Mean W
1	Control	1	0.98	0.94	1.14 1.22	1.30 0.72	0.92	1.16 0.94	1.30 0.76	0.84	0.82	0.86	1.03
	-	3	0.90	0.94	0.80	1.16	1.04	0.94	0.76	0.86	1.12	1.10	0.90
		4	0.90	0.78	0.92	0.76	1.18	0.72	0.86	0.72	0.96	1.08	0.89
		Mean	0.95	0.88	1.02	0.99	1.02	0.92	0.95	0.86	0.95	0.94	0.95
2	Beneficial micro-organisms	1	0.82	1.04	0.66	0.74	0.70	0.60	0.78	0.72	0.78	1.00	0.78
		2	0.78	0.90	0.92	0.92	0.82	1.06	0.70	1.12	1.04	0.90	0.92
		3	0.94	0.84	0.98	1.02	0.80	0.96	0.88	1.04	0.88	0.82	0.92
		4	1.06	0.88	0.78	0.94	0.96	1.08	0.74	0.76	0.70	0.98	0.89
		Mean	0.90	0.92	0.84	0.91	0.82	0.93	0.78	0.91	0.85	0.93	0.88
3	Bacillus subtilis A	1	0.84	0.82	0.88	1.02	0.96	0.88	0.82	0.92	0.88	0.92	0.89
		2	0.90	1.10	0.82	0.84	0.86	1.02	0.84	0.88	0.84	1.20	0.93
		3	0.96	0.94	0.74	1.14 0.84	1.06	0.64	0.84	1.24 0.86	1.06 0.82	0.98	0.96
		4 Mean	0.92	0.98	0.98	0.84	0.98	0.93	0.90	0.86	0.82	1.00	0.96
4	Compost tea program	1	1.14	1.04	1.26	1.12	1.02	1.22	0.90	1.02	1.04	0.92	1.07
-	Compost tea program	2	1.06	1.10	1.08	1.12	1.02	0.83	0.92	0.82	1.04	1.08	1.07
		3	1.10	1.04	1.26	1.06	1.00	1.18	0.94	0.74	1.10	1.12	1.05
		4	0.78	1.02	1.10	1.12	0.94	1.26	1.10	1.14	0.86	1.12	1.04
		Mean	1.02	1.05	1.18	1.10	1.01	1.12	0.97	0.93	1.02	1.06	1.04
5	Trichoderma program A	1	0.88	0.58	0.66	0.98	0.72	0.64	0.64	0.84	1.06	0.72	0.77
		2	0.68	0.68	0.84	0.70	0.84	0.88	0.82	1.02	0.80	0.70	0.80
		3	0.84	1.20	1.12	1.00	0.94	0.78	1.02	0.80	1.14	1.04	0.99
		4	1.04	1.10	1.02	0.96	0.88	1.16	0.88	1.14	1.24	0.84	1.03
		Mean	0.86	0.89	0.91	0.91	0.85	0.87	0.84	0.95	1.06	0.83	0.90
6	Trichoderma program B	1	1.02	0.98	0.92	1.06	1.02	0.90	1.00	1.08	0.92	1.24	1.01
		2	1.04	0.92	0.92	0.78	0.78	0.68	1.16	0.66	0.60	0.66	0.82
		3	0.80	0.96	0.70	0.82	0.86	0.56	0.74	1.04	0.94	1.02	0.84
		4 Mean	0.92	0.92	0.80 0.84	0.76	0.76	0.92	0.72	1.14 0.98	0.86	0.66	0.85
7	Bacillus subtilis B	1 niean	0.95	1.02	0.82	0.76	0.86	0.76	0.91	1.02	0.80	0.90	0.87
'	Bacilius subtilis B	2	0.76	0.80	1.16	1.14	0.80	1.00	1.02	0.94	0.80	0.80	0.87
		3	0.84	0.90	0.90	0.68	0.30	0.82	0.78	0.82	0.94	0.96	0.84
		4	0.94	0.76	0.88	1.22	1.06	0.86	0.84	1.04	1.06	0.74	0.94
		Mean	0.86	0.87	0.94	0.95	0.89	0.86	0.91	0.96	0.93	0.85	0.90
8	Trichoderma program C	1	1.04	0.90	1.06	0.94	1.06	1.10	0.72	0.88	0.86	0.84	0.94
		2	0.88	0.72	0.96	1.12	0.96	0.76	0.96	1.06	0.94	0.72	0.91
		3	1.10	0.90	0.76	0.74	1.08	0.72	1.10	0.94	1.08	0.74	0.92
		4	0.84	0.68	0.94	1.02	0.98	0.60	0.78	1.14	1.12	0.76	0.89
		Mean	0.97	0.80	0.93	0.96	1.02	0.80	0.89	1.01	1.00	0.77	0.91
9	Trichoderma program D	1	0.74	0.96	0.80	1.04	0.89	0.96	0.82	0.90	0.88	0.78	0.88
		2	0.84	1.04	0.88	0.76	0.92	0.94	0.70	0.80	0.66	0.74	0.83
		3	0.84	0.76	0.68	0.90	0.86	0.82	0.98	1.06	0.74	1.02	0.87
		4	0.88	1.22	0.88	0.90	0.80	0.84	0.80	1.12	1.14	0.96	0.95
10	Marra contingo A	Mean	0.83	1.00	0.81	0.90	0.87	0.89	0.83	0.97	0.86	0.88	0.88
10	Worm castings A	1	0.84	1.18	1.06	0.98	1.26	0.98	1.02	0.96	0.86	0.78	0.99
		2	1.06	1.12 1.20	1.02 1.24	1.18 1.24	0.90	1.26 0.98	0.98	1.28 1.26	1.20	1.10 1.28	1.11 1.20
		4	0.82	0.84	0.84	1.24	1.14	0.98	0.96	0.76	0.96	0.90	0.91
		Mean	1.04	1.09	1.04	1.11	1.10	1.03	1.04	1.07	1.01	1.02	1.05
11	Worm castings B	1	1.00	1.10	0.76	0.92	1.02	0.84	0.96	0.80	0.86	0.82	0.91
		2	1.08	0.94	0.84	1.22	1.18	0.82	0.86	0.94	0.84	0.84	0.96
		3	0.82	0.94	0.88	0.90	1.10	1.10	0.82	0.78	1.10	0.86	0.93
		4	1.06	0.92	1.02	0.96	1.04	1.00	0.96	0.92	1.04	1.06	1.00
		Mean	0.99	0.98	0.88	1.00	1.09	0.94	0.90	0.86	0.96	0.90	0.95
12	Trichoderma program E	1	1.12	0.96	0.92	1.14	0.90	0.96	1.00	0.94	0.96	1.08	1.00
		2	0.68	0.96	0.74	0.86	0.88	0.76	1.00	0.78	0.92	0.80	0.84
		3	0.80	0.82	0.86	0.78	1.00	0.76	0.90	0.84	0.72	0.74	0.82
		4	0.96	0.92	1.02	0.94	0.92	0.92	0.94	1.04	1.12	0.92	0.97
		Mean	0.89	0.92	0.89	0.93	0.93	0.85	0.96	0.90	0.93	0.89	0.91
13	Biocontrol mixture	1	1.22	1.18	0.90	0.98	1.28	1.08	1.04	1.14	1.30	1.24	1.14
		2	1.08	1.20	1.10	1.02	0.96	1.06	1.04	1.14	1.04	0.98	1.06
		3	0.94	1.08	0.96	1.10	1.00	0.78	0.96	0.78	0.80	1.14	0.95
		_	0.80 1.01	0.84 1.08	0.72 0.92	0.96	0.94	0.72 0.91	0.80	1.10 1.04	1.00 1.04	1.06	0.89
14	Sumisclex	Mean 1	0.80	0.90	0.92	1.02 0.92	1.05 0.88	0.91	0.96	0.82	0.98	1.11 0.86	0.87
14	Sumsclex	2	0.80	1.00	1.16	1.02	0.88	1.08	1.08	1.10	0.98	0.86	0.87
		3	0.84	0.82	0.96	1.02	0.92	0.88	0.90	0.90	1.08	0.70	0.99
		4	0.86	0.58	1.14	0.84	0.80	1.06	1.08	1.14	0.82	0.88	0.90
		Mean	0.82	0.83	1.06	0.95	0.87	0.96	0.96	0.99	0.97	0.82	0.92

Field Trial - Harvest Assessment for Head Size

No.	Treatment	Rep	Head 1	Head 2	Head 3	Head 4	Head 5	Head 6	Head 7	Head 8	Head 9	Head 10	Mean Size
1	Control	1	58	59	59	62	54	54	65	55	52	56	57.40
		2	59	62	69	62	61	63	62	60	61	59	61.80
		3	57	60	47	62	58	53	56	62	63	63	58.10
		4	57	54	57	53	58	57	57	52	62	50	55.70
2	Beneficial micro-organisms	Mean 1	57.75 52	58.75 58	58.00 49	59.75 54	57.75 52	56.75 44	60.00 54	57.25 48	59.50 53	57.00 59	58.25 52.30
-	Denencial Inicio-organisms	2	61	58	61	63	54	66	55	64	66	63	54.80
		3	58	55	56	50	52	58	52	57	53	57	61.10
		61	57	56	56	56	58	57	53	56	54	52	55.50
		Mean	57.00	56.75	55.50	55.75	54.00	56.25	53.50	56.25	56.50	57.75	55.93
3	Bacillus subtilis A	1	58	59	56	59	57	51	60	55	56	55	56.60
		2	56	60	62	56	54	59	50	58	54	65	57.40
		3	64 48	62 52	62 55	54 62	49 62	60 56	60 56	50 50	58 54	63 58	58.20 55.30
		4 Mean	56.50	58.25	58.75	57.75	55.50	56.50	56.50	53.25	55.50	60.25	56.88
4	Compost tea program	1	63	64	60	64	58	57	56	59	61	55	59.70
		2	66	66	66	55	59	62	63	65	64	63	62.90
		3	60	55	67	58	55	58	57	50	59	58	57.70
		4	54	58	62	62	56	60	59	61	58	64	59.40
		Mean	60.75	60.75	63.75	59.75	57.00	59.25	58.75	58.75	60.50	60.00	59.93
5	Trichoderma program A	1	56	53	60	64	51	53	53	57	61	53	56.10
		2	49	49 69	53 64	53 61	56 55	57 57	53	57 50	52	53 66	53.20 59.60
		3	55 62	69	64 60	53	55	63	58 57	50 64	61 70	58	59.60 60.20
		4 Mean	55.50	58.00	59.25	57.75	54.00	57.50	55.25	57.00	61.00	57.50	57.28
6	Trichoderma program B	1	61	58	55	54	57	55	56	57	57	62	57.20
		2	59	56	57	52	54	51	62	48	50	54	54.30
		3	57	58	52	52	56	51	55	61	61	59	56.20
		4	58	61	56	55	50	60	57	62	58	51	56.80
		Mean	58.75	58.25	55.00	53.25	54.25	54.25	57.50	57.00	56.50	56.50	56.13
7	Bacillus subtilis B	1	53	53	53	50	54	49	59	58	52	54	53.50
		2	53 58	53 54	61 51	65 48	53 53	57 55	58 51	58 56	58 56	47 55	56.30 53.70
		4	59	54	60	40 59	55	53	53	62	60	55	56.50
		Mean	55.75	52.75	56.25	55.50	54.00	53.50	55.25	58.50	56.50	52.00	55.00
8	Trichoderma program C	1	63	56	58	55	60	60	52	50	54	52	56.00
		2	56	47	61	59	59	50	55	59	54	50	55.00
		3	67	55	53	49	57	52	54	57	63	50	55.70
		4	59	51	60	61	63	50	54	64	60	52	57.40
		Mean	61.25	52.25	58.00	56.00	59.75	53.00	53.75	57.50	57.75	51.00	56.03
9	Trichoderma program D	1 2	57 61	62 57	61 57	64 53	60 57	53 55	57 53	58	52 53	54 52	57.80
		3	51	57	57	53	56	55	53	55 55	53	52	55.30 53.90
		4	58	66	54	61	50	56	55	66	59	54	57.90
		Mean	56.75	60.50	55.50	59.25	55.75	54.00	54.25	58.50	53.75	54.00	56.23
10	Worm castings A	1	56	61	62	57	64	57	58	54	54	53	57.60
		2	54	58	56	61	52	62	57	62	61	58	58.10
		3	55	56	55	55	58	55	61	46	50	56	54.70
		4	64	56	63	64	59	53	67	62	67	69	62.40
11	Worm castings B	Mean 1	57.25 59	57.75 58	59.00 51	59.25 56	58.25 56	56.75 51	60.75 53	56.00 56	58.00 55	59.00 49	58.20 54.40
11	worm castings D	1 2	59 60	58	51	63	58	51	53	55	55	49	55.50
		3	61	59	58	60	64	60	52	98	67	55	63.40
		4	64	64	56	62	67	57	54	56	53	59	59.20
		Mean	61.00	60.00	54.50	60.25	61.25	55.00	53.75	65.75	56.75	53.00	58.13
12	Trichoderma program E	1	60	55	50	60	52	53	57	54	56	55	55.20
		2	56	57	58	58	58	51	60	52	60	56	56.60
		3	55	51	58	55	57	51	52	55	51	52	53.70
		4 Mean	61 58.00	62 56.25	60 56.50	58 57.75	55 55.50	53 52.00	56 56.25	58 54.75	65 58.00	56 54.75	58.40 55.98
13	Biocontrol mixture	1	56	61	55	58	61	52.00	58	61	61	55	58.20
		2	63	67	63	62	59	58	61	62	54	60	60.90
		3	59	53	53	55	56	48	57	50	49	55	53.50
		4	57	60	62	64	48	58	58	51	52	49	55.90
		Mean	58.75	60.25	58.25	59.75	56.00	55.00	58.50	56.00	54.00	54.75	57.13
14	Sumisclex	1	51	51	56	54	55	54	53	53	56	53	53.60
		2	53	56	59	54	53	55	54	60	62	48	55.40
		3	56	53	56	55	51	54	58	56	60	55	55.40
		4 Mean	59 54.75	50 52.50	64 58.75	58 55.25	56 53.75	67 57.50	60 56.25	64 58.25	55 58.25	56 53.00	58.90 55.83
		mean	J4./J	52.50	30./5	55.25	00.70	57.50	00.20	30.25	30.25	55.00	55.65

Field Trial - Harvest Assessment for Head Firmness Rating

No.	Treatment	Rep	Head 1	Head 2	Head 3	Head 4	Head 5	Head 6	Head 7	Head 8	Head 9	Head 10	Mean Firmness
1	Control	1 2	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00 1.00	1.40
		3	1.00	1.00 1.00	1.00 1.00	1.00 2.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.10
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean	1.00	1.00	1.00	1.25	1.00	1.00	1.25	1.25	1.25	1.25	1.13
2	Beneficial micro-organisms	1	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.20
		2	2.00	2.00	2.00 2.00	1.00	1.00 2.00	2.00	2.00	2.00 2.00	1.00	2.00 1.00	1.70
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.30 1.00
		Mean	1.25	1.25	1.75	1.00	1.25	1.25	1.25	1.50	1.00	1.50	1.30
3	Bacillus subtilis A	1	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.20
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	1.00	1.00	2.00	2.00 2.00	2.00 2.00	1.00	2.00	2.00	2.00	1.00 1.00	1.60 1.20
		4 Mean	1.00	1.00	1.00	1.50	1.50	1.00	1.00	1.00	1.50	1.00	1.20
4	Compost tea program	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	2.00	1.20
		3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.10
5	Trichoderma program A	Mean 1	1.00 1.00	1.00 2.00	1.00 2.00	1.00 1.00	1.00 2.00	1.00 2.00	1.25 2.00	1.00 2.00	1.00 1.00	1.50 1.00	1.08 1.60
5	monouerma programa	2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	1.00	1.00	1.70
		3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		4	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10
		Mean	1.50	1.50	1.50	1.25	1.50	1.50	1.50	1.25	1.00	1.00	1.35
6	Trichoderma program B	1	2.00	1.00	1.00	1.00	1.00 11.00	1.00	2.00	1.00	1.00	1.00 1.00	1.20 2.00
		3	1.00	2.00	2.00	1.00	2.00	1.00 2.00	2.00	1.00	1.00	2.00	1.60
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean	1.25	1.25	1.25	1.00	3.75	1.25	1.50	1.00	1.00	1.25	1.45
7	Bacillus subtilis B	1	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.10
		2	1.00	1.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.20
		3	1.00	1.00	1.00	2.00	2.00	2.00	2.00	1.00	1.00	1.00 1.00	1.40 1.00
		4 Mean	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.18
8	Trichoderma program C	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	2.00	2.00	1.00	1.00	1.00	2.00	1.00	1.00	1.30
		3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.10
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.10
9	Trichoderma program D	Mean 1	1.00 2.00	1.00 1.00	1.25 1.00	1.25 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.50 1.00	1.00 1.00	1.25 2.00	1.13 1.20
0	monoucimu program D	2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
		3	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.10
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean	1.50	1.25	1.25	1.25	1.25	1.25	1.50	1.25	1.25	1.50	1.33
10	Worm castings A	1	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.20
		3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.10
		4	2.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.30
		Mean	1.25	1.00	1.50	1.50	1.00	1.00	1.00	1.00	1.25	1.00	1.15
11	Worm castings B	1	1.00	1.00	1.00	2.00	1.00	2.00	1.00	1.00	1.00	1.00	1.20
		2	1.00	2.00	1.00 2.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00 1.00	1.20 1.10
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10
		Mean	1.00	1.25	1.25	1.25	1.00	1.25	1.25	1.00	1.00	1.00	1.13
12	Trichoderma program E	1	2.00	2.00	1.00	2.00	1.00	2.00	1.00	1.00	1.00	1.00	1.40
		2	2.00	1.00	2.00	2.00	1.00	2.00	2.00	2.00	1.00	1.00	1.60
		3	1.00	1.00	1.00	2.00	1.00	2.00	1.00	2.00	2.00	1.00	1.40
		4 Mean	1.00 1.50	1.00 1.25	1.00 1.25	1.00 1.75	1.00 1.00	2.00 2.00	1.00 1.25	1.00 1.50	1.00 1.25	1.00 1.00	1.10 1.38
13	Biocontrol mixture	1	2.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20
		2	1.00	1.00	1.00	1.00	2.00	1.00	1.00	2.00	1.00	1.00	1.20
		3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		4	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.30
14	Sumisclex	Mean 1	1.50 1.00	1.25 2.00	1.00 1.00	1.25 2.00	1.25 1.00	1.00 2.00	1.00 1.00	1.25 1.00	1.00 1.00	1.25 1.00	1.18 1.30
14	GUIIISCIEX	2	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.30
		3	1.00	2.00	2.00	2.00	1.00	1.00	1.00	2.00	1.00	1.00	1.40
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean	1.25	1.75	1.25	1.50	1.00	1.25	1.00	1.25	1.25	1.00	1.25

Field Trial - Harvest Assessment for Head Shape Rating

	Decident	D		1110	1110		11		11	1110	11	11	Mean Shape
No. 1	Product	Rep 1	Head 1 1.00	Head 2 1.00	Head 3 1.00	Head 4 1.00	Head 5 1.00	Head 6 1.00	Head 7 1.00	Head 8 1.00	Head 9 1.00	Head 10 1.00	1.00
	Control	2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	1.00	2.00	2.00	2.00	1.00	1.00	1.00	2.00	2.00	2.00	1.60
		4	1.00	1.00	2.00	1.00	2.00	1.00	1.00	1.00	2.00	2.00	1.40
		Mean	1.00	1.25	1.50	1.25	1.25	1.00	1.00	1.25	1.50	1.50	1.25
2	Beneficial micro-organisms	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	1.00		1.00	1.00	2.00	2.00	1.00	2.00	1.00	2.00	1.44
		4	2.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00	1.30
3	Bacillus subtilis A	Mean 1	1.25 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.50 1.00	1.50 1.00	1.00 1.00	1.25 1.00	1.00 1.00	1.25 1.00	1.19 1.00
3	Bacilius subtilis A	2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4	Compost tea program	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	2.00	2.00	1.90
		4 Mean	1.00	1.00 1.25	2.00	1.00	2.00	2.00 1.50	2.00	2.00	2.00	1.00	1.60
5	Trichoderma program A	1 Niean	1.25 1.00	2.00	1.50 2.00	1.25 1.00	1.50 2.00	2.00	1.50 2.00	1.25 2.00	1.50 1.00	1.25 1.00	1.38 1.60
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	1.00	2.00	2.00	2.00	2.00	1.00	2.00	1.00	2.00	2.00	1.70
		4	1.00	1.00	2.00	1.00	2.00	2.00	2.00	2.00	2.00	1.00	1.60
		Mean	1.00	1.50	1.75	1.25	1.75	1.50	1.75	1.50	1.50	1.25	1.48
6	Trichoderma program B	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.10
		3	1.00 2.00	1.00 2.00	1.00	1.00 2.00	1.00	1.00 2.00	1.00	1.00 2.00	1.00	1.00 2.00	1.00 1.60
		4 Mean	1.25	1.25	1.00	1.25	1.00	1.25	1.00	1.25	1.00	1.25	1.00
7	Bacillus subtilis B	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.10
		3	2.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	1.00	1.00	1.40
		4	1.00	1.00	2.00	1.00	2.00	1.00	1.00	2.00	2.00	2.00	1.50
		Mean	1.25	1.00	1.25	1.00	1.25	1.25	1.25	1.75	1.25	1.25	1.25
8	Trichoderma program C	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	2.00	2.00 2.00	2.00	2.00	2.00	2.00	2.00 2.00	2.00	1.80
		3	2.00	2.00	2.00	2.00	1.00 2.00	2.00	1.00	2.00 2.00	2.00	1.00 1.00	1.80 1.40
		Mean	1.00	1.25	1.50	1.75	1.50	1.50	1.50	1.75	1.75	1.00	1.40
9	Trichoderma program D	1	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10
	· -	2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	1.00	1.00	2.00	2.00	2.00	1.00	2.00	2.00	1.00	2.00	1.60
		4	2.00	2.00	1.00	2.00	2.00	2.00	1.00	2.00	2.00	1.00	1.70
10	Manage and a set	Mean	1.50	1.25	1.25	1.50	1.50	1.25	1.25	1.50	1.25	1.25	1.35
10	Worm castings A	1	1.00 1.00	1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00	1.00	1.00 1.00	1.00 1.00
		3	2.00	1.00	2.00	1.00	1.00	1.00	2.00	2.00	1.00	2.00	1.50
		4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean	1.25	1.00	1.25	1.00	1.00	1.00	1.25	1.25	1.00	1.25	1.13
11	Worm castings B	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10
		3	1.00	2.00	2.00	2.00	1.00	2.00	1.00	1.00	2.00	1.00	1.50
<u> </u>		4 Moan	2.00	2.00	2.00	2.00 1.75	2.00	1.00 1.25	1.00 1.00	1.00 1.00	2.00	2.00	1.70 1.33
12	Trichoderma program E	Mean 1	1.25 1.00	1.50 1.00	1.50 2.00	1.75	1.25 1.00	1.25	1.00	1.00	1.50 1.00	1.25 1.00	1.33
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		3	2.00	1.00	2.00	1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.40
		4	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	2.00	2.00	1.30
		Mean	1.25	1.00	1.50	1.25	1.00	1.00	1.25	1.25	1.25	1.25	1.20
13	Biocontrol mixture	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
\vdash		3	1.00 1.00	1.00 1.00	1.00 1.00	2.00	1.00	1.00 1.00	2.00	1.00 1.00	1.00	2.00	1.30 1.00
				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Mean				1.20		1.00					
14	Sumisclex	Mean 1	1.00 1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
14	Sumisclex	Mean 1 2	1.00 1.00 1.00	1.00	1.00 2.00	1.00 2.00	1.00	1.00 2.00	1.00 2.00	1.00 2.00	1.00 2.00	1.00 2.00	1.00 1.80
14	Sumisclex	1	1.00	1.00									
14	Sumisclex	1 2	1.00 1.00	1.00 2.00	2.00	2.00	1.00	2.00	2.00	2.00	2.00	2.00	1.80

Pot Trial – Vigour Assessments

No.	Treatment	Rep	5/12/02	20/12/02
1	Untreated control	1	2	2
		2	1	2
		3	1	3
		Mean	1.33	2.33
2	Beneficial micro-organisms	1	2	2
-	Denonalar more organicine	2	1	2
		3	1	2
		Mean	1.33	2.00
3	Bacillus subtilis A	1	2	2
0	Duolinuo Subtino / (2	1	2
		3	1	2
		Mean	1.33	2.00
4	Compost tea program	1	2	1
		3	1	1
		Mean	1.33	1.00
5	Trichoderma program A	1	1	2
		2	1	2
		3	1	3
		Mean	1.00	2.33
6	Trichoderma program B	1	2	1
		2	1	2
		3	1	2
		Mean	1.33	1.67
7	Bacillus subtilis B	1	1	1
		2	1	2
		3	1	2
		Mean	1.00	1.67
8	Trichoderma program C	1	1	1
		2	1	2
		3	1	2
		Mean	1.00	1.67
9	Trichoderma program D	1	1	1
		2	1	1
		3	1	1
		Mean	1.00	1.00
10	Worm castings A	1	1	1
		2	1	1
		3	1	2
		Mean	1.00	1.33
11	Worm castings B	1	1	1
		2	1	2
		3	1	2
		Mean	1.00	1.67
12	Trichoderma program E	1	1	1
		2	1	3
		3	1	2
		Mean	1.00	2.00
12	Piocontrol mixture	1	1.00	3
13	Biocontrol mixture	1	1	3
		2	1	2
				-
	-	Mean	1.00	2.00
14	Sumisclex	1	2	2
		2	1	2
		3	1	2
	1	Mean	1.33	2.00

Pot Trial - Disease Assessments

No.	Treatment	Rep	5/12/2002	20/12/2002	5/12/2002	20/12/2002
1	Untreated control	1	0	0	0.00	0.00
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.00	0.00	0.00	0.00
2	Beneficial micro-organisms	1	1	2	16.67	33.33
		2	0	2	0.00	33.33
		3	0	1	0.00	16.67
		Mean	0.33	1.67	5.56	27.78
3	Bacillus subtilis A	1	0	0	0.00	0.00
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.00	0.00	0.00	0.00
4	Compost tea program	1	0	5	0.00	83.33
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.00	1.67	0.00	27.78
5	Trichoderma program A	1	0	0	0.00	0.00
-		2	0	0	0.00	0.00
	1	3	0	0	0.00	0.00
		Mean	0.00	0.00	0.00	0.00
6	Trichoderma program B	1	1	2	16.67	33.33
5	onodernia program D	2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.33	0.67	5.56	11.11
7	Desillus subtilis D	1				0.00
1	Bacillus subtilis B	2	0	0	0.00	0.00
		3	0	0		0.00
					0.00	
	Trick of any statement O	Mean	0.00	0.00	0.00	0.00
8	Trichoderma program C	1	0	0	0.00	0.00
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.00	0.00	0.00	0.00
9	Trichoderma program D	1	2	2	33.33	33.33
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.67	0.67	11.11	11.11
10	Worm castings A	1	1	2	16.67	33.33
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.33	0.67	5.56	11.11
11	Worm castings B	1	1	0	16.67	0.00
		2	0	2	0.00	33.33
		3	0	0	0.00	0.00
		Mean	0.33	0.67	5.56	11.11
12	Trichoderma program E	1	1	5	16.67	83.33
		2	1	4	16.67	66.67
		3	0	5	0.00	83.33
		Mean	0.67	4.67	11.11	77.78
13	Biocontrol mixture	1	0	0	0.00	0.00
		2	0	0	0.00	0.00
		3	0	0	0.00	0.00
		Mean	0.00	0.00	0.00	0.00
14	Sumisclex	1	0	0	0.00	0.00
	Cambolox	2	0	0	0.00	0.00
	1	3	0	0	0.00	0.00
	1	Mean	0.00	0.00	0.00	0.00

2003/04 Data

Lettuce Field trial – Yield Assessment

Na	Treatment	Dam	Head	Head	Head	Head	Head	Head	Head	Head	Head	Head	Mean
No.	Treatment	Rep	1	2	3	4	5	6	7	8	9	10	Wt
1	Untreated Control	1	0.72	0.48	0.60	0.48	0.46	0.60	0.52	0.60	0.48	0.42	0.54
		2	0.52	0.54	0.48	0.40	0.56	0.44	0.56	0.62	0.64	0.62	0.54
		3	0.40	0.44	0.72	0.50	0.38	0.40	0.36	0.40	0.48	0.44	0.45
		4	0.26	0.36	0.44	0.40	0.38	0.66	0.28	0.50	0.40	0.52	0.42
		5	0.16	0.22	0.24	0.24	0.16	0.40	0.18	0.30	0.20	0.38	0.25
		6	0.40	0.34	0.38	0.36	0.24	0.42	0.32	0.46	0.30	0.26	0.35
		7	0.28	0.26	0.22	0.36	0.28	0.24	0.24	0.26	0.36	0.26	0.28
		Mean	0.39	0.38	0.44	0.39	0.35	0.45	0.35	0.45	0.41	0.41	0.40
2	Biological Program (field only)	1	0.34	0.48	0.38	0.26	0.47	0.50	0.36	0.54	0.52	0.40	0.43
		2	0.66	0.54	0.72	0.60	0.64	0.56	0.54	0.46	0.54	0.52	0.58
		3	0.66	0.54	0.58	0.70	0.50	0.50	0.48	0.46	0.54	0.32	0.53
		4	0.46	0.66	0.58	0.56	0.58	0.62	0.50	0.48	0.54	0.62	0.56
		5	0.38	0.46	0.42	0.42	0.54	0.38	0.50	0.46	0.44	0.40	0.44
		6	0.34	0.30	0.48	0.38	0.36	0.42	0.64	0.46	0.36	0.52	0.43
		7	0.42	0.50	0.72	0.52	0.44	0.48	0.38	0.46	0.46	0.40	0.48
	Rielegical Dragram	Mean	0.47	0.50	0.55	0.49	0.50	0.49	0.49	0.47	0.49	0.45	0.49
3	Biological Program (nursery, field)	1	0.36	0.45	0.42	0.38	0.70	0.28	0.44	0.46	0.54	0.40	0.44
		2	0.54	0.42	0.52	0.58	0.52	0.52	0.60	0.42	0.62	0.54	0.53
		3	0.42	0.30	0.38	0.40	0.42	0.44	0.36	0.54	0.50	0.62	0.44
		4	0.46	0.30	0.32	0.44	0.46	0.42	0.48	0.52	0.34	0.40	0.41
		5	0.46	0.42	0.38	0.48	0.40	0.42	0.40	0.44	0.50	0.46	0.44
		6 7	0.48	0.46	0.50	0.30	0.42	0.52	0.48	0.32	0.46	0.30	0.42
		7 Mean	0.40	0.26	0.30	0.50 0.44	0.38	0.34	0.38 0.45	0.26	0.48	0.36	0.37
4	Worm Castings (field	1	0.45	0.40	0.40	0.44	0.47	0.42	0.45	0.42	0.49	0.44	0.44
7	only)												
		2	0.88	0.68	0.70	0.46	0.68	0.68	0.98	0.78	0.70	0.67	0.72 0.58
		4	0.66	0.00	0.60	0.38	0.48	0.30	0.46	0.34	0.80	0.80	0.56
		5	0.40	0.48	0.50	0.56	0.30	0.32	0.40	0.56	0.30	0.30	0.42
		6	0.24	0.54	0.40	0.38	0.20	0.40	0.30	0.30	0.44	0.40	0.44
		7	0.74	0.84	0.40	0.64	0.60	0.50	0.20	0.48	0.42	0.56	0.40
		, Mean	0.55	0.57	0.54	0.49	0.53	0.32	0.52	0.57	0.54	0.50	0.53
5	Worm Castings (nursery, field)	1	0.44	0.61	0.56	0.49	0.66	0.48	0.48	0.48	0.74	0.32	0.56
		2	0.52	0.60	0.78	0.64	0.66	0.64	0.80	0.46	0.52	0.50	0.61
		3	0.52	0.00	0.66	0.60	0.00	0.66	0.50	0.40	0.66	0.30	0.66
	1	4	0.58	0.32	0.00	0.00	0.56	0.62	0.40	0.46	0.00	0.72	0.46
	ł	5	0.26	0.48	0.50	0.28	0.52	0.36	0.44	0.40	0.52	0.64	0.40
	1	6	0.62	0.50	0.58	0.50	0.58	0.74	0.48	0.44	0.66	0.52	0.56
		7	0.66	0.44	0.50	0.48	0.52	0.40	0.68	0.56	0.54	0.56	0.53
		Mean	0.53	0.50	0.57	0.52	0.64	0.56	0.55	0.50	0.59	0.53	0.55
6	Bacillus subtilis (field only)	1	0.70	0.64	0.58	0.58	0.50	0.64	0.34	0.68	0.48	0.40	0.55
		2	0.54	0.64	0.54	0.58	0.50	0.52	0.50	0.62	0.60	0.66	0.57
		3	0.34	0.34	0.34	0.36	0.48	0.22	0.54	0.40	0.32	0.38	0.37
		4	0.54	0.50	0.36	0.34	0.50	0.44	0.30	0.36	0.44	0.28	0.41
		5	0.26	0.48	0.50	0.28	0.52	0.36	0.44	0.42	0.52	0.64	0.44
		6	0.62	0.50	0.58	0.50	0.58	0.74	0.48	0.44	0.66	0.52	0.56
		7	0.66	0.44	0.50	0.48	0.52	0.40	0.68	0.56	0.54	0.56	0.53
		Mean	0.52	0.51	0.49	0.45	0.51	0.47	0.47	0.50	0.51	0.49	0.49

	Bacillus subtilis	<u> </u>											
7	(nursery, field)	1	0.48	0.48	0.50	0.46	0.46	0.56	0.42	0.38	0.42	0.60	0.48
		2	0.45	0.40	0.38	0.68	0.54	0.48	0.36	0.62	0.60	0.50	0.50
		3	0.52	0.48	0.48	0.58	0.58	0.56	0.54	0.48	0.68	0.46	0.54
		4	0.50	0.46	0.34	0.56	0.54	0.40	0.42	0.46	0.36	0.40	0.44
		5	0.48	0.42	0.42	0.34	0.50	0.48	0.40	0.28	0.56	0.40	0.43
		6	0.42	0.46	0.40	0.46	0.50	0.34	0.52	0.44	0.50	0.46	0.45
		7	0.58	0.52	0.38	0.68	0.46	0.46	0.42	0.46	0.42	0.46	0.48
		Mean	0.49	0.46	0.41	0.54	0.51	0.47	0.44	0.45	0.51	0.47	0.47
8	Biological mixture (field only)	1	0.52	0.44	0.36	0.62	0.52	0.48	0.58	0.52	0.84	0.46	0.53
		2	0.64	0.50	0.52	0.52	0.50	0.52	0.32	0.38	0.48	0.66	0.50
		3	0.56	0.68	0.60	0.60	0.54	0.44	0.46	0.58	0.46	0.44	0.54
		4	0.34	0.32	0.30	0.38	0.38	0.34	0.26	0.46	0.38	0.22	0.34
		5	0.52	0.32	0.42	0.44	0.38	0.38	0.34	0.46	0.52	0.38	0.42
		6	0.28	0.42	0.50	0.54	0.26	0.44	0.28	0.26	0.38	0.50	0.39
		7	0.46	0.36	0.30	0.36	0.46	0.40	0.46	0.44	0.58	0.44	0.43
		Mean	0.47	0.43	0.43	0.49	0.43	0.43	0.39	0.44	0.52	0.44	0.45
9	Biological mixture (nursery, field)	1	0.66	0.54	0.62	0.58	0.48	0.50	0.40	0.48	0.72	0.64	0.56
		2	0.72	0.68	0.56	0.88	0.46	0.70	0.56	0.62	0.60	0.50	0.63
		3	0.58	0.56	0.64	0.40	0.48	0.68	0.58	0.42	0.44	0.58	0.54
		4	0.48	0.36	0.40	0.52	0.42	0.58	0.56	0.62	0.48	0.52	0.49
		5	0.44	0.46	0.48	0.40	0.36	0.54	0.32	0.36	0.42	0.38	0.42
		6	0.36	0.50	0.48	0.40	0.40	0.38	0.32	0.44	0.38	0.40	0.41
		7	0.42	0.48	0.54	0.52	0.56	0.54	0.48	0.46	0.30	0.38	0.47
		Mean	0.52	0.51	0.53	0.53	0.45	0.56	0.46	0.49	0.48	0.49	0.50
10	Commercial Control (field only)	1	0.68	0.56	0.54	0.62	0.84	0.72	0.54	0.52	0.44	0.74	0.62
		2	0.42	0.40	0.48	0.46	0.48	0.38	0.32	0.48	0.46	0.38	0.43
		3	0.40	0.42	0.46	0.30	0.36	0.28	0.46	0.40	0.36	0.36	0.38
		4	0.52	0.44	0.48	0.44	0.52	0.42	0.54	0.40	0.28	0.40	0.44
		5	0.26	0.52	0.30	0.22	0.36	0.34	0.40	0.32	0.22	0.32	0.33
		6	0.36	0.38	0.44	0.34	0.48	0.44	0.42	0.36	0.44	0.38	0.40
		7	0.40	0.48	0.46	0.46	0.58	0.46	0.30	0.40	0.42	0.38	0.43
		Mean	0.43	0.46	0.45	0.41	0.52	0.43	0.43	0.41	0.37	0.42	0.43
11	Commercial Control (nursery, field)	1	0.56	0.58	0.78	0.64	0.74	0.84	0.66	0.72	0.62	0.48	0.66
		2	0.66	0.42	0.78	0.50	0.42	0.40	0.62	0.44	0.38	0.40	0.50
		3	0.60	0.72	0.52	0.58	0.72	0.62	0.62	0.58	0.66	0.64	0.63
		4	0.28	0.38	0.42	0.36	0.36	0.36	0.44	0.38	0.44	0.44	0.39
		5	0.36	0.34	0.50	0.38	0.52	0.44	0.36	0.36	0.32	0.34	0.39
		6	0.30	0.20	0.22	0.22	0.32	0.28	0.24	0.26	0.32	0.36	0.27
		7	0.40	0.44	0.44	0.36	0.40	0.46	0.42	0.48	0.42	0.36	0.42
		Mean	0.45	0.44	0.52	0.43	0.50	0.49	0.48	0.46	0.45	0.43	0.47

Field Trial - Plot ratings for crop quality

No.	Product	Rep	Vigour	Colour	Size	Shape	Firmness	Diseased plants (Sclerotinia, leaf slime)	Stunted plants	% Marketable
1	Untreated Control	1	2	3	3	2	2	0	0	100%
		2	3	3	2	2	2	1	0	98%
		3	2	3	2	2	2	0	0	100%
		4	2	3	1.5	2	2	0	0	100%
		5	2	3	1.5	1.5	1.5	3	0	94%
		6	2.5	3	3	2.5	2.5	0	0	100%
		7	1.5	3	1.5	1.5	2	1	0	98%
		Mean	2.1	3.0	2.1	1.9	2.0	0.7	0.0	99%
2	Biological Program (field only)	1	2	3	2	2	3	0	0	100%
		2	3	3	3	2	3	1	0	98%
		3	2	3	2	2	2.5	1	0	98%
		4	3	3	3	2	3	0	0	100%
		5	2.5	3	3	2.5	1.5	1	0	98%
		6	2.5	3	2.5	2.5	2	1	0	98%
		7	2	3	2	2	2	0	1	98%
		Mean	2.4	3.0	2.5	2.1	2.4	0.6	0.1	99%
3	Biological Program (nursery, field)	1	3	3	3	3	3	1	0	98%
		2	3	3	3	2	2	1	0	98%
		3	2	3	2	2	2	3	0	94%
		4	2	3	2	2	2.5	2	0	96%
		5	3	3	2	3	3	1	0	98%
		6	3	3	3	3	3	0	0	100%
		7	3	3	3	3	3	0	0	100%
		Mean	2.7	3.0	2.6	2.6	2.6	1.1	0.0	98%
4	Worm Castings (field only)	1	2	3	3	2	1.5	1	0	98%
		2	3	3	3	2	3	0	0	100%
		3	3	3	3	2	2	0	0	100%
		4	1	3	1.5	1.5	3	1	0	98%
		5	2	3	2	2	2	2	0	96%
		6	2.5	3	2.5	2.5	3	1	0	98%
		7	2	3	2	2	2	3	0	94%
		Mean	2.2	3.0	2.4	2.0	2.4	1.1	0.0	98%
5	Worm Castings (nursery, field)	1	3	3	2	2	2	3	0	94%
		2	3	3	3	2	3	1	0	98%
		3	3	3	2	2	2	1	0	98%
		4	2	3	2	2	2	1	0	98%
		5	2	3	2	2	3	2	0	96%
		6	3	3	3	3	3	1	0	98%
		7	3	3	3	3	3	0	0	100%
		Mean	2.7	3.0	2.4	2.3	2.6	1.3	0.0	98%

Appendix iii - Complete data (Cont.)

Field Trial - Plot ratings for crop quality

6	Bacillus subtilis (field only)	1	3	3	3	2	2	1	0	98%
	(2	2	2	2	2	2	2	0	96%
		3	3	3	2	2	1.5	1	0	98%
		4	3	3	3	3	2	1	0	98%
		5	2	3	2	2	1.5	2	0	96%
		6	3	3	2	2	2	0	0	100%
		7	2	3	2	3	2	2	0	96%
						-			-	
		Mean	2.6	2.9	2.3	2.3	1.9	1.3	0.0	98%
7	Bacillus subtilis (nursery, field)	1	2	3	2	2	1.5	0	0	100%
		2	2	2	2	2	2	1	0	98%
		3	3	3	3	3	2.5	0	0	100%
		4	3	3	2	3	2.5	0	0	100%
		5	2	3	3	2	2	1	0	98%
		6	2.5	3	2.5	3	3	2	0	96%
		7	3	3	3	3	2	0	0	100%
			-		-				-	
		Mean	2.5	2.9	2.5	2.6	2.2	0.6	0.0	99%
8	Biocontrol mixture (field only)	1	2	3	2	2	3	2	0	96%
	, , , , , , , , , , , , , , , , , , ,	2	2	3	2	2	2	1	0	98%
		3	2	3	2	2	2	2	1	94%
		4	3	3	3	3	2	0	1	98%
		5	3	3	3	3	2	1	0	98%
		6	3	3	3	3	3	1	0	98%
		7								
			2	3	1.5	1.5	1.5	0	0	100%
		Mean	2.4	3.0	2.4	2.4	2.2	1.0	0.3	98%
9	Biocontrol mixture (nursery, field)	1	2	3	3	3	2	0	0	100%
	() ,)	2	3	3	3	2	2	2	1	94%
		3	3	3	3	3	2.5	1	0	98%
		4	3	3	3	3	3	0	0	100%
		5	2.5	3	3	3	3	3	0	94%
		6	2	3	2	2	2	2	0	96%
		7	3	3	2.5	3	3	0	0	100%
		Mean	2.6	3.0	2.8	2.7	2.5	1.1	0.1	98%
10	Commercial Control (field only)	1	2	3	3	2	2	1	0	98%
	, , ,	2	1.5	3	2	1.5	3	3	1	93%
		3	2	3	2	2	2	0	0	100%
		4	1.5	3	2	1.5	2	0	2	96%
		5	3	3	3	3	2	0	0	100%
		6	3	3	3	3	2	0	0	100%
		6		3	3		2			
			3			3		1	0	98%
		Mean	2.3	3.0	2.6	2.3	2.1	0.7	0.4	98%
11	Commercial Control (nursery, field)	1	3	3	2	2	2	1	0	98%
		2	1.5	3	2	1.5	2	0	5	91%
		3	3	3	3	3	3	2	0	96%
		4	2.5	3	2.5	2	2	0	0	100%
		5	2	3	2	1.5	3	2	0	96%
							2			90%
		6	2	2	2	2		3	0	
		7	3	3	3	3	2.5	0	0	100%
		Mean	2.4	2.9	2.4	2.1	2.4	1.1	0.7	97%

Appendix iii - Complete data (Cont.)

Broccoli Field trial - Yield Assessment (First cut)

1st cut	510	451	459	306	409	390	440	422	462	433	398	388	456	375	418 	468	473	390	393	390	411	425	984	557	435	455	476	490	557	923	534	563	40/ 509	511 368	554	1002	500	397	477	373	3//	507	525 403	380	409	430	88 88		
Ī		Ī	T	Ī			$\left[\right]$	ſ			280		440	020	360	077	0	ſ				440	520	010	$\left[\right]$	Ī	Ī		520			Ī	ſ	940	940		$\left \right $			240		240				Ī		$\left[\right]$	
				Ī					440		320		340	720	30/	460	460	202				460	760	8					760					300	300			400		440	001	420	T			520		520	
									440	280	220		380		330		240	245	340			387	840	20					840					540	540			420		300	000	360		380		420	320	373	
			760				760		660	540	320		560	002	079	460	ore Office	3	280			410	760	8			480	379	525			440		360	400			420	680	340		480		240		360	360	320	-
			520	340			430		099	460	520	400	400	_	_	_	140	30	009			530	880	8			320	416	484	560		340		260 460	405			220 220	420	460			480	380	_	_	300	-	-111
			420	400			410		380	360	300	320	300	_	332	00/	000	3	440	380	300	437	1020	240			240	345	551	200		460	32U	680	533			360	460	320	000	390	300 300	460	680	560	360	471	
			340	320			330		+	_		400	-				580	400	380	400	400	460	780	8			400	525	561	300	440	520	520	500	429			500	-	+	-		480 340	560	640	400	360	463	-
		440	320	nnc	420	420	420		520	480	440	280	500	444	444	340	200	420	340	580	360	440	1240	2	420	400	200	579	603	840	400	440	300	480	451			340	440	360		345	300	360	380	480	240	391	
	780	380	620	480	320	440	503		-	-	-	440	-	260	38/	260	100	360	400	400	480	446	1120	400	580	360	940	442	563	680	500	200	320	560	514			300	+		-	-	380	320	640	440	360	-	ł
	480	460	400	780	580	380	430		+	-		340	-	260	-	480 620	020	300	540	340	640	491	980	560	460	520	500	561	586	440	480	480	008	580	526	1080		440	280	460	-	-	340 380	440	280	380	300	346	
	720	500	400	400 080	340	380	440		500	360	420	340	400	300	-	280	100	480	300	480	420	406	1000	460	380	500	280	394	-			680	340	320	531	1000		380	+	420	╋			500					1 mm
	380	560	600	300	380	340	454	-	+	-		340	-	300	-	520	160	320	480	300	300	431	960	360	_	-	-	462		760	360	660	200	460	514	1020		340	220	420	╋		420 340				420		
	_	420	_	_	420	280	417	340	+	_				380	_	+	+	400	+			╟─		400	-	660	-	+			-	800	070	440	494	980		360	520	500	-			360			320	451	
	-	260	-	-	460	+	403	-	+	-		-	-	320	_	-	+	320	+	-	-	╟─		-	520	660	-	467	-		-	320	380		537	-		360	+	360	╋	-	-	360	_	-		403	1
	_		_	_	440	320	417	560	420	400	540	360	-	260	+	400 2002		380	420	480	340	437	1020	560	560	-	_	-	623			460	380	640 360	551	1040	500	240	420	280	-	-	-	500	_	_	-		
	_	340	-	_	+	+	386	-	+	_	-	440	-	280	_	_	+	320	-	_		╟─		340	_	-	640	-	497	-	460	740	320	240	500	1240	500	360	500	440	-	577	560 440	300	460	540	560 560	477	
-	_	_	-	_	400	380	477	420	420	360	560	420	520	380	_	+	620	420	320	360	480	╟─		440	_	600	560	626	615	920	800	440	320	300	569	1120	480	320	440	340	-		46U 420	420	-	-	-	-	-
		360	-	-	200	320	437	-	+	-	-	300	-	300	-	-	+	420	-		300	╟─		420	_	-	099 280	-	┢	╢─		480	480	520	609	096	200	500	420	360	-	_	500 280		_	740	_	-	-
	440	600	520	040	420	360	500	420	380	360	280	420	-	320	_	_	000	460	460	380	360	417	1040	580	460	400	200	580	569	-	-	440	400	540 380	557	860	420	280	420	280	-		700	400	300	400			
-	_	540	_	_	420	580	460	-	+	-	\vdash	400	-	360	-	+	+	540	-		-	╟─	-	580	520	560	-	637	╟─		860	360	460	480	586	860	480	420 740	520	360	-	-	_	340	260	520	320	446	
-		480	+	+	380	360	477	-	+	-	-	580	380	_	_	+	+	320	+			╟─		-	400	-	220	-	414		400	460	000	900	586			300	560	420	-	-	520 320	_	_	_	520 440		-
-	_	460	_	_	300	540	417	300	360	-	\vdash	660	360	480	_	460	+	400	-	_	_	420	840	520	_	-	320	+	518	006	500	006	070	400	589	1160	420	400	420	340			720				300		
_	_	500	-	_	+	440		-	+	-	\vdash		-	380	+	340	+	420	+			╟─	980	_	_	_	660	-	587			660	380	++	-	Ē	720	540	+	460	3/6	640	440 420	300 360	340	680	320	469	
_			_	_	_	_	437		_	_				460	_	_	_	_	_	_	_			_		_	_	_	_	_		_	_	340 340					_										
	340	480	520	040 180	580	300	477	440	360	460	380	340	440	029	420	300	100	3 Q	380	280	360	394	1120	780	480	460	380	408	584	980	660	2100	340	480	574	1100	520	360	440	400	427	232	420 400	120	520	400	380	366	
	380	520	420		400	420	446	460	420	320	400	320	520	082	389	07Q	240	380	480	420	320	406	1010	460	320	360	340	546	522	820	380	580	460	500	200	096	380	540	640	380	420	L/G	400	380	340	260	360	391	
	360	340	480	340	360	400	363	280	460	320	480	400	860	340	449	640 520	320	320	480	320	320	449	096	200	320	240	480	540	500	1180	540	500	400	480	580	1020	400	200	640	420	427	129	360	420	320	260	380	371	
	380	300	380		420	520	420	340	420	460	340	420	460	400	406	600 540	040	340	280	280	320	411	1100	580	400	480	460	704	615	920	780	460	080	380	586	940	320	420 240	540	260	404	440	500	360	360	420	360	429	ļ
	320	520	440	740	340	609	414	340	280	560	460	500	200	360	nns	940	200	<u>5</u> 64	320	360	360	437	1080	460	360	380	320	485	532	1040	480	520	120	440	222	006	480	380	440	360	787	4//	500 420	320	380	280	320	360	;
	420	380	420	400	420	340	414	520	400	440	520	280	420	360	420	200 200	040	300	320	340	360	403	1160	2002	680	300	520	497	611	1260	560	740	600	2002	657	1100	380	220	340	280	526	394	500 400	340	400	500	380	409	
	500	440	360	070	420	260	434	500	320	540	420	400	320	340	406	000	340	420	260	300	360	409	1420	1000	260	380	480	434	636	1440	520	640	360	400	634	860	740	380	480	260	346	504	400 500	280	320	600	420 360	411	
1	520	560	520	000	500	300	460	520	280	340	540	380	480	440	470	380 380	260	400	480	340	420	403	920	820	380	420	620	758	634	860	520	480	420	0 120 440 380 420 500 480 0 620 440 380 480 500 480 0 301 470 380 380 480 500 480 0 301 301 301 381 381 381 381	537	980	580	220 480	480	320	391	493	620 480	660	320	340	380	451	
	460	500	300	460	340	280	400	340	300	360	460	420	560	460	414	480	007	340	540	420	580	434	1080	2002	420	400	440 580	581	600	880	500	560	440	400	560	1040	520	280	700	500	376	559	460 440	320	280	480	360	380	
	660	480	440	040	400	560	480	360	440	540	520	420	420	560	400	500 460	004	400	280	580	440	420	1060	520	480	660	660	486	641	980	560	780	520	580	589	940	500	380	200	520	494	536	340	480	360	220	320	389	
	600	700	520	380	460	460	506	300	420	360	500	260	500	460	400	440 600	220	560	320	400	320	423	1160	760	480	500	200	539	686	1260	700	1140	480	520	608	960	660	860	420	460	413	599	540	280	400	200	340	389	
Rep	-	2	m •	4 u	9	~	Mean		- ~	3	4	5	+	7			4 6	04	5	9	7	Mean	•	5	3	4	e P	2	Mean	F	2	с, -	4 v	9 1	Mean	-	2	ω 4	2	91	-	Mean	1	4 C	4	υ Ω	9	Mean	
No.	٢			T				~	4				Ī	Ţ	•	e	J	Γ					4							5		T		Π		9		T		Π	ľ		7	Π					ľ

Appendix iii - Complete data (Cont.)

Broccoli Field trial - Yield Assessment (First cut)

503	411	434	424	393	431	402	428	495	444	380	457	420	493	391	440	445	434	432	466	382	460	385	429	468	479	394	410	441	446	380	431
																														Ì	
																	500						500								
										240		480			360		009						600			120					100
					380		380			140		320			230	620	460				560		547			180			420		000
		260			440	498	399			360		480			420	300	480		600		360		435			320	320		340	-	100
		360		320	380	479	385		480	420	380	300			395	560	420		540		360		470			420	400		300		040
		320	340	320	360	553	379		200	320	440	260		378	320	460	480		500		360		450			360	400	400	380		- 00
	300	500	360	300	460	558	413		400	420	440	480	340	340	403	540	360		340		320		390			500	360	820	360		0.1
	420	260	280	360	500	440	377		580	380	460	460	480	520	480	340	380		360	360	360		360			300	340	400	460		L L C
	320	420	400	360	320	474	382		420	320	280	400	420	363	367	600	420	340	380	500	480		453		380	460	380	500	400		
	360	300	320	360	340	233	319		520	380	420	500	420	660	483	540	440	420	520	280	460		443		640	420	560	460	340		
	300	380	720	500	500	386	464		560	440	260	460	200	474	449	520	420	280	260	440	400		437		320	380	280	540	400	Π	
	240	360	380	360	420	362	354		480	380	440	540	400	420	443	600	400	380	460	520	280		440		300	520	480	440	420		007
460	420	620	720	360	340	264	455	540	360	260	580	260	480	329	444	540	380	420	420	320	092		473		440	300	380	400	520	366	
480	460	440	280	340	640	425	438	460	520	440	440	540	400	398	457	420	380	360	520	340	460		413		580	320	380	400	500	354	001
560	320	320	560	360	460	484	438	540	360	380	200	360	620	391	450	360	280	420	560	340	460		403	660	340	360	340	380	380	354	
440	360	520	440	460	400	364	426	500	360	200	300	520	520	377	440	400	400	340	540	320	360		393	580	200	540	620	500	360	358	
500	240	460	540	340	340	582	429	540	340	360	540	400	460	373	430	440	520	380	360	300	340		390	380	360	340	380	500	099	363	001
620	420	500	340	580	360	431	464	420	460	400	440	220	360	299	371	140	380	380	560	480	420		393	520	480	300	320	320	400	327	100
500	009	580	580	420	480	517	525	360	440	460	540	340	480	407	432	340	460	340	420	240	620	393	402	580	560	240	420	460	360	421	
260	680	680	360	360	480	576	485	500	620	220	400	360	480	365	421	440	240	380	380	460	480	319	386	400	200	520	340	280	360	353	001
680	320	360	420	480	240	371	410	540	520	160	380	500	540	237	411	320	580	360	320	420	200	300	429	380	520	400	460	340	580	386	001
500	420	400	360	280	400	232	370	520	009	120	380	360	580	236	399	340	460	620	480	320	220	479	417	500	500	320	400	480	480	265	101
620	540	420	400	260	560	394	456	420	380	280	420	420	320	362	372	460	420	460	520	400	480	275	431	320	400	420	420	380	460	560	001
440	520	600	240	400	420	422	435	460	480	520	500	400	400	444	458	380	440	420	280	380	540	440	411	660	200	480	380	380	380	334	
540	300	380	440	400	380	327	395	480	380	220	500	480	009	304	423	360	200	520	440	460	480	454		340							
480	560	240	440	360	560	347	427	480	400	560	500	380	540	320	454	440	400	540	540	480	460	479	477	400	099	320	440	400	560	391	L
480	400	280	340	340	460	369	381	400	480	380	440	440	360	401	414	680	380	440	300	280	520	382	426	520	420	620	340	460	360	396	
460	440	340	420	360	580	242	406	460	009	560	500	420	460		491		460	480	340	440	640	353	445	500	440	440	480	420	200	591	001
420	520	460	320	440	380	413	422	_	_	_	_	_	_	431	496	480	_	-		_		-	<u> </u>	_	_	_	300	_	_	_	007
700	420	640	460	500	440	344	501	-	_	-	_	_	-	465	504	420							-	_	_	_	300	_	_	_	007
520	280	420	360	480	580	423	438	_	300	440	620	440	640	436	477	380	480	460	400	340	009	384		440	520	420	500	380	540	_	
460	540	580	400	400	500	372	465	500	340	400	620	580	620	353	488	380	009	420	520	_	500	_		480	480	420	340	340		452	007
520	380	540	480	420	240	287	410	440		440	640	520	600	400	511	420	280	640	200	400	540	297		480	500	440	560	660	480		001
420	440	520	600	560	460	297	471	660		_	300	460	540	416	441	620	500			460	300	376	451	360	500	360		400	009	300	007
1	2	3	4	5	9	7	Mean	-	2	3	4	5	9	7	Mean	-	2	3	4	5	9	7	Mean	-	2	3	4	5	9	7	
8								6								10								1							L

Appendix iii - Complete data (Cont.)

Broccoli Field trial - Yield Assessment (Second cut)

Mean 2nd cut	300	384		320	307	328	383	300		510	256	362						340	340		390	347				368		390	350		400	380	400	473		180	417	368	120	370	000	320		300
																																					320	320						
																																					260	260						
																																					360	360						
																																					360	360						
																				-																	400	400						
																																					160	160						
					280	280																															380	380						
					180	180																					_										180	180						
					340	340																															300	300						
					300	300														_							_							440			220	330						
		Ī			340	340																Ī					_							460			400	430						
					220	220	380					380																						460			500	480						
					240	240	260					260																						480			460	470						
	500	480		400	360	435	500				240	370															_						400	500			660	520						
	120	480		260	560	355	380				340	360									540					540	_						340	460			480	427						
	340	460		320	220	335	400				240	320									160	280				220							420	560			500	493				280		
	320	320		220	300	290	400			380	140	307									460	540			Ì	500		260	340		T	300	520	500			480	500		480	000	300		
	220	180		400	340	285	360	300		640	320	405		Ť				340	340		400	220			T	310		520	360		400	427	320	400		180	440	335	120	260	000	380		300
Rep	-	5	ω 4	e cz	0 ~	Mean	-	N 60	9 4	e N		Mean	1	2	ω 4	5	9	7	Mean	1	2	e	4	ى د	0 ~	Mean	1	2	ω 4	5	9	Mean	•	7	en ₹	- 10	9	Mean	1	2	с, .	4 v	9 9	7
N	-					1	7		-			ii	e						1	4	_					1	5						9					<u>a</u>	ے ۔					

VG02088

Serve-Ag Research

71

278

#DIV/01 280 390 253 Mean

Appendix iii – Complete data (Cont.)

Broccoli Field trial - Yield Assessment (Second cut)

474	435		300			410	405	492					270	308	357			365		280		370	338	482		390	320	315	230		347
																								340							016
																						360	360	480							100
																						540	540	520							620
560							560															200	200	460							100
580							580								#DIV/01							580	580	600							000
520							520	-							i0//NIC#	-						240	240	340							010
520							520								i0//NIC#							420	420	500							500
260							260								i0//\IC#							300	300	420							007
400							400	520						240	380							580	580	480							007
460	500					540	500	340						280	310			320				300	310	540		200		320			262
420	420					300	380	560						360	460			440				400	420	500		420		320			112
460	480		240			440	405	520					340	360	407			340				280	310	480		420		260	240		260
560	340		360			360	405	520					200	300	340			360		280		240	293	460		520	320	360	220		376
1	2	е С	4	5	9	7	Mean	1	2	e	4	5	9	7	Mean	1	2	e	4	2	9	7	Mean	-	0	e	4	5	9	7	400P
8								6								10								11							u

Appendix iii – Complete Data (Cont.)

Broccoli recovery assessments

Hole Hole <th< th=""><th></th><th>Treatment 5</th><th>ent 5</th><th></th><th></th><th>Treat</th><th>Treatment 6</th><th></th><th></th><th>Treat</th><th>Treatment 2</th><th></th><th></th><th>Treatr</th><th>Treatment 7</th><th></th><th></th><th>Treatm</th><th>Treatment 10</th><th></th><th></th><th>Treatment</th><th>nent 8</th><th></th></th<>		Treatment 5	ent 5			Treat	Treatment 6			Treat	Treatment 2			Treatr	Treatment 7			Treatm	Treatment 10			Treatment	nent 8	
100 </th <th></th> <th></th> <th>Floret wt</th> <th>Recovery</th> <th>Head no.</th> <th></th> <th></th> <th>Recovery</th> <th>Head no.</th> <th>Head wt</th> <th></th> <th></th> <th>- ·</th> <th>Head wt</th> <th></th> <th>Recovery</th> <th>Head no.</th> <th>Head wt</th> <th>Floret wt</th> <th>Recovery</th> <th>Head no.</th> <th>Head</th> <th>Floret wt</th> <th>Recovery</th>			Floret wt	Recovery	Head no.			Recovery	Head no.	Head wt			- ·	Head wt		Recovery	Head no.	Head wt	Floret wt	Recovery	Head no.	Head	Floret wt	Recovery
60 610 610 610 700	-	500	380	76%	-	348	253	73%	-	560	380	68%	-	435	303	0.6966	-	580	440	0.7586	-	327	250	0.7645
30030164%3040077%64%3040050%40050%40050%<		506	330	65%	2	480	360	75%	2	450	337	75%	2	300	220	0.7333	2	425	320	0.7529	2	440	340	0.7727
30 30% 40 30 40 200 70% 40 200 70% 40 200 40 200 40 200 40 200 40 200 40 200 40 200 40 200 400 <th< td=""><td></td><td>380</td><td>320</td><td>84%</td><td>в</td><td>404</td><td>277</td><td>%69</td><td>ю</td><td>420</td><td>269</td><td>64%</td><td>ю</td><td>340</td><td>260</td><td>0.7647</td><td>ю</td><td>380</td><td>300</td><td>0.7895</td><td>3</td><td>320</td><td>257</td><td>0.8031</td></th<>		380	320	84%	в	404	277	%69	ю	420	269	64%	ю	340	260	0.7647	ю	380	300	0.7895	3	320	257	0.8031
314 216 66% 5 304 5 304 5 304 5 400 77% 5 600 400 77% 5 500 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70% 50 70%		480	360	75%	4	340	240	71%	4	400	280	20%	4	455	341	0.7495	4	510	384	0.7529	4	300	220	0.7333
30 79% 6 80 79% 6 80 70% 60 70% 60 70% 60 70% 60 70% <		314	215	68%	5	480	347	72%	5	297	209	20%	5	347	254	0.732	5	600	420	0.7	5	340	240	0.7059
3 4 1 5		380	300	79%	9	820	640	78%	9	363	235	65%	9	300	220	0.7333	9	526	400	0.7605	9	400	326	0.815
340 246 72% 6 440 7743 6 600 7143 6 600 7143 6 600 7143 6 600 7143 6 703 60 7056 8 430 140 320 73% 90 300 76% 9 37 7% 9 300 300 714 9 300 300 774 10 512 300 773 11 300 773 11 300 773 11 300 773 11 400 70 10 400 773 11 400 70 10 400 773 11 300 773 11 400 70 10 70 10 70 10 70 10 70 70 10 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70<		520	400	77%	7	520	380	73%	7	500	380	76%	7	425	335	0.7882	7	340	280	0.8235	7	320	240	0.75
410 320 73% 9 300		340	246	72%	80	320	240	75%	80	430	296	%69	80	560	400	0.7143	8	503	380	0.7555	8	498	345	0.6928
314 203 73% 10 563 410 73% 10 203 774 10 512 301 703 10 503 0.733 10 503 0.733 10 503 310 240 147 11 367 270 7% 11 260 0.753 11 360 0.773 11 360 310 240 7% 13 365 17% 13 286 13 286 14 400 300 0.743 14 380 7747 14 380 410 300 74% 13 286 13 286 14 40 30 0.743 14 320 14 320 410 300 76% 14 438 286 68% 14 440 30 14 40 320 0744 14 320 174 14 320 14 320 14 320		440	320	73%	ი	500	380	76%	6	434	337	78%	6	373	260	0.6971	6	480	340	0.7083	o	420	320	0.7619
340 240 71% 11 367 74% 11 367 74% 11 367 74% 11 360 71% 11 440 320 0.773 11 380 0.773 11 380 515 360 74% 12 260 71% 12 340 260 71% 12 340 582 88% 13 345 580 87% 14 445 340 7345 12 340 7345 13 340 7368 13 340 7345 14 340 7345 14 340 744 14 340 744 14 341 341 341 341 342 341 14 342 14 342 14 342 14 342 14 14 14 14 14 14 14 14 14 14 342 14 14 14 14 14 14 14 </td <td></td> <td>314</td> <td>230</td> <td>73%</td> <td>10</td> <td>563</td> <td>410</td> <td>73%</td> <td>10</td> <td>280</td> <td>220</td> <td>79%</td> <td>10</td> <td>308</td> <td>223</td> <td>0.724</td> <td>10</td> <td>512</td> <td>360</td> <td>0.7031</td> <td>10</td> <td>550</td> <td>397</td> <td>0.7218</td>		314	230	73%	10	563	410	73%	10	280	220	79%	10	308	223	0.724	10	512	360	0.7031	10	550	397	0.7218
15 380 14% 12 380 17% 12 340 280 82% 12 340 12% 12 340 17% 12 340 17% 12 340 17% 12 582 68% 13 340 13 345 13 365 13' 75% 13' 348 230 68% 13' 40' 13' 582 430 0'743 14' 30' 430 300 70% 15 14 230 66% 14' 41' 30' 0'74' 14' 30' 430 500 70% 15 20' 70% 15' 40' 14' 40' 14'		340	240	71%	11	367	270	74%	11	262	170	65%	11	400	300	0.75	11	440	320	0.7273	11	380	300	0.7895
40074%1336577%1336577%1336568%134203000.7143136300.77431344042032076%1438020071%144382300.764142800.71431432243030070%1533423570%1532054075%154402800.764141453300.74161540066050076%1650075%1650036075%164002800.7142800.74161540066050076%1740028075%1680036075%163600.7561740030761070%1670%1725075%163602660.7361676%1676%61070%1670%1725075%163000.7251740030130161070%1826075%1675%163602660.743163007761640061070%1920069%75%174003020.6957173000.77671628061028070%1928070%19280102800.746		515	380	74%	12	280	200	71%	12	340	280	82%	12	354	260	0.7345	12	340	260	0.7647	12	588	436	0.7415
42032076%1428070%1443829066%14453400.74142800.71431432243030070%1533423570%1532024075%154002600.7154453300.7461540066050076%1634075%1635072%1636075%1636077%173002030.74161630066050076%173454035075%1635075%163600.741616360613640167473%1650075%18372%18372%163000.7671730061446075%1784032066%1866%1866%1866%173002030.767174061075%1784075%1872%1878%182600.76416163061075%1976%1885%78%1832066%17300276%174028061075%1978%1878%1878%1828066%172026%17402861075%10%10%26% <td></td> <td>540</td> <td>400</td> <td>74%</td> <td>13</td> <td>365</td> <td>273</td> <td>75%</td> <td>13</td> <td>348</td> <td>235</td> <td>68%</td> <td>13</td> <td>420</td> <td>300</td> <td>0.7143</td> <td>13</td> <td>582</td> <td>430</td> <td>0.7388</td> <td>13</td> <td>440</td> <td>300</td> <td>0.6818</td>		540	400	74%	13	365	273	75%	13	348	235	68%	13	420	300	0.7143	13	582	430	0.7388	13	440	300	0.6818
430 300 70% 15 304 15 304 15 304 15 304 15 304 15 304 15 304 15 304 15 304 15 304 15 406 15 445 300 0.7416 15 16 300 660 500 76% 16 500 75% 17 460 505 175 16 300 7647 16 300 635 456 72% 16 50 72% 17 460 301 16 30 265 1767 16 300 767 17 400 640 450 72% 18 405 78% 18 230 6764 16 30 7767 17 400 640 450 72% 19 766 18 78% 18 230 66954 17 400 50 7767 19 <td< td=""><td></td><td>420</td><td>320</td><td>76%</td><td>14</td><td>280</td><td>200</td><td>71%</td><td>14</td><td>438</td><td>290</td><td>%99</td><td>14</td><td>445</td><td>340</td><td>0.764</td><td>14</td><td>280</td><td>200</td><td>0.7143</td><td>14</td><td>322</td><td>250</td><td>0.7764</td></td<>		420	320	76%	14	280	200	71%	14	438	290	%99	14	445	340	0.764	14	280	200	0.7143	14	322	250	0.7764
600 500 76% 16 740 730 7647 16 500 76% 16 500 76% 16 500 76% 16 340 260 76% 16 340 76% 16 340 360 76% 17 360 26% 17 300 27% 17 300 3767 17 300 3767 17 300 3767 17 300 3767 17 300 3767 17 400 300 300 3763 37767 17 400 301 301 302 37767 17 400 301 301 302 37767 17 400 301		430	300	%02	15	334	235	%02	15	320	240	75%	15	400	280	0.7	15	445	330	0.7416	15	400	320	0.8
635 72% 17 344 230 67% 17 260 320 67% 17 460 320 6957 17 300 233 0.7767 17 400 640 460 72% 18 405 315 78% 18 342 239 0.6968 18 360 0.722 18 400 400 280 70% 19 50 410 85% 19 360 0.7222 18 280 383 280 70% 19 50 40 85% 19 360 0.7222 18 280 280 280 0.7445 280		660	500	76%	16	740	540	73%	16	500	360	72%	16	360	265	0.7361	16	340	260	0.7647	16	390	307	0.7872
640 460 72% 18 260 180 698 18 360 260 0.722 18 280 280 400 280 70% 19 315 219 70% 19 520 440 85% 19 360 0.722 18 280 280 383 280 70% 19 316 240 85% 19 360 0.722 19 360 0.732 19 360 316 316 383 280 73% 20 420 307 440 85% 19 360 0.743 20 140 316 346		635	455	72%	17	344	230	67%	17	255	183	72%	17	460	320	0.6957	17	300	233	0.7767	17	400	300	0.75
400 280 70% 19 30% 19 85% 19 360 0.7222 19 460 360 0.7826 19 313 383 280 73% 20 434 298 69% 20 280 0.7143 20 412 310 0.7524 440 316 383 280 73% 20 420 300 71% 20 434 298 69% 20 280 0.7143 20 412 310 7524 20 440 466.85 335.8 73% Average 378 2877 0.7219 Average 383.2 279 7495 Average 393.65 466.85 335.8 73% Average 387.2 279 0.7495 7495 Average 393.65 466.85 335.86 49% 7 0.7281 Average 440.75 7495 7495 7495 7495 7495 7495 7495 <td></td> <td>640</td> <td>460</td> <td>72%</td> <td>18</td> <td>260</td> <td>180</td> <td>%69</td> <td>18</td> <td>405</td> <td>315</td> <td>78%</td> <td>18</td> <td>342</td> <td>239</td> <td>0.6988</td> <td>18</td> <td>360</td> <td>260</td> <td>0.7222</td> <td>18</td> <td>280</td> <td>220</td> <td>0.7857</td>		640	460	72%	18	260	180	%69	18	405	315	78%	18	342	239	0.6988	18	360	260	0.7222	18	280	220	0.7857
383 280 73% 20 420 300 71% 20 434 298 69% 200 2014 210 412 310 0.7524 200 440 456.85 335.8 73% Average 424 307.8 287.7 0.7219 Average 383.2 279 0.7281 Average 393.65 333.65 140.75 329.35 0.7495 Average 393.65 1 1 1 1 0.7149 383.2 279 0.7281 Average 393.65 393.65 1 1 1 1 0.7219 Average 383.2 279 0.7281 Average 393.65 1 </td <td></td> <td>400</td> <td>280</td> <td>%02</td> <td>19</td> <td>315</td> <td>219</td> <td>%02</td> <td>19</td> <td>520</td> <td>440</td> <td>85%</td> <td>19</td> <td>360</td> <td>260</td> <td>0.7222</td> <td>19</td> <td>460</td> <td>360</td> <td>0.7826</td> <td>19</td> <td>318</td> <td>240</td> <td>0.7547</td>		400	280	%02	19	315	219	%02	19	520	440	85%	19	360	260	0.7222	19	460	360	0.7826	19	318	240	0.7547
456.85 335.8 73% Average 397.8 287.7 0.7219 Average 383.2 279 Average 440.75 329.35 0.7495 Average 393.65 1 4% 1 3% 1		383	280	73%	20	420	300	71%	20	434	298	%69	20	280	200	0.7143	20	412	310	0.7524	20	440	340	0.7727
4% 3% 6% 3% 3% 0.91% 0.61% 1.33% 0.58% 0.58%			335.8	73%	Average		308.7		Average	397.8	287.7			383.2	279		Average	440.75	329.35	0.7495	Average	393.65	297.4	0.758
0.91% 0.61% 1.33% 0.58%	Standard Dev			4%				3%				%9				3%				3%				4%
	Standard Error			0.91%				0.61%				1.33%				0.58%				0.70%				0.82%

Serve-Ag Research

73

Appendix iii – Complete data (Cont.)

Head wt Floret wt Recovery 560 420 0.75 343 243 0.7685 520 400 0.7692	Head no	Head						-				
420 243 400		κ	Floret wt	Recovery	Head no.	Head wt	Floret wt	Recovery	Head no.	Head wt	Floret wt	Recovery
243 400	5	511	387	0.7573	-	722	517	0.7161	-	472	328	0.6949
400	85 2	440	340	0.7727	7	260	180	0.6923	7	460	380	0.8261
2	92 3	430	313	0.7279	ю	500	380	0.76	ю	518	406	0.7838
445 333 0.7483	83 4	360	260	0.7222	4	410	312	0.761	4	540	400	0.7407
460 360 0.7826	26 5	620	400	0.6452	5	372	293	0.7876	5	603	476	0.7894
386 310 0.8031	31 6	465	356	0.7656	9	320	260	0.8125	9	440	320	0.7273
400 280 0.7	7 7	500	360	0.72	7	500	376	0.752	7	462	350	0.7576
360 280 0.7778	78 8	460	342	0.7435	8	420	320	0.7619	8	440	340	0.7727
360 260 0.7222	22 9	760	600	0.7895	б	340	280	0.8235	თ	460	340	0.7391
395 300 0.7595	95 10	630	480	0.7619	10	414	312	0.7536	10	445	345	0.7753
380 300 0.7895	95 11	280	420	0.7241	11	582	474	0.8144	11	560	420	0.75
487 370 0.7598	98 12	408	290	0.7108	12	380	260	0.6842	12	450	332	0.7378
380 300 0.7895	95 13	400	280	0.7	13	324	240	0.7407	13	360	260	0.7222
444 347 0.7815	15 14	405	326	0.8049	14	400	280	0.7	14	266	192	0.7218
400 280 0.7	7 15	380	280	0.7368	15	536	392	0.7313	15	460	340	0.7391
360 270 0.75	5 16	333	270	0.8108	16	320	260	0.8125	16	376	290	0.7713
640 520 0.8125	25 17	460	340	0.7391	17	428	336	0.785	17	500	360	0.72
390 293 0.7513	13 18	395	276	0.6987	18	380	260	0.6842	18	415	330	0.7952
390 297 0.7615	15 19	300	220	0.7333	19	380	300	0.7895	19	280	200	0.7143
420 320 0.7619	19 20	308	250	0.8117	20	380	280	0.7368	20	405	319	0.7877
426 324.15 0.7589	89 Average	457.25	339.5	0.7438	Average	418.4	315.6	0.755	Average	445.6	336.4	0.7533
3%	,0			4%				4%				3%
0.71%	%			0.94%				1.00%				0.75%

Serve-Ag Research

74

Appendix iv - Statistical Analysis

2002/03 Trials

ANOVA - Mean Yield

Analysis of Variance for Mean Yield - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:Treatment B:Replicate	0.205044 0.00374234	13 3	0.0157726 0.00124745	2.76 0.22	0.0071 0.8830
RESIDUAL	0.222651	39	0.00570899		
TOTAL (CORRECTED)	0.431436	55			

All F-ratios are based on the residual mean square error.

The StatAdvisor

The ANOVA table decomposes the variability of Mean Yield into contributions due to various factors. Since Type III sums of squares (the default) have been chosen, the contribution of each factor is measured having removed the effects of all other factors. The P-values test the statistical significance of each of the factors. Since one P-value is less than 0.05, this factor has a statistically significant effect on Mean Yield at the 95.0% confidence level.

Multiple Range Tests for Mean Weight by Treatment

Method: 95.0 Treatment	percent LS Count		Homogeneous Grou	ps
6	4	0.8415	Х	
2	4	0.876	XX	
9	4	0.88125	XX	
5	4	0.8955	XX	
7	4	0.899	XX	
12	4	0.907	XXX	
8	4	0.9125	XXX	
3	4	0.937	XXXX	
14	4	0.943375	XXXX	
1	4	0.946	XXXXX	
11	4	0.953375	XXXX	
13	4	1.0115	XXX	
4	4	1.04425	XX	
10	4	1.052	Х	
Contrast			Difference	+/- Limits
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			0.07 0.009 -0.09825 0.0505 0.1045 0.047 0.0335 0.06475 -0.106	0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067

8 - 12 8 - 13 8 - 14	0.0055 -0.099 -0.030875	0.108067 0.108067 0.108067
9 - 10 9 - 11 9 - 12 9 - 13 9 - 14 10 - 11 10 - 12 10 - 13 10 - 14 11 - 12 11 - 13 11 - 14 12 - 13 12 - 14 13 - 14 13 - 14 13 - 14 14 15 - 15 16 - 15 17 - 14 17 - 15 17 - 14 17 - 15 17 - 14 17 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	*-0.17075 -0.072125 -0.02575 *-0.13025 -0.062125 0.098625 *0.145 0.0405 *0.108625 0.046375 -0.058125 0.01 -0.1045 -0.036375 0.068125	0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067 0.108067

* denotes a statistically significant difference.

The StatAdvisor

This table applies a multiple comparison procedure to determine which means are significantly different from which others. The bottom half of the output shows the estimated difference between each pair of means. An asterisk has been placed next to 22 pairs, indicating that these pairs show statistically significant differences at the 95.0% confidence level. At the top of the page, 5 homogenous groups are identified using columns of X's. Within each column, the levels containing X's form a group of means within which there are no statistically significant differences. The method currently being used to discriminate among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.

ANOVA – Mean Head Size

Analysis of Variance	for Mean head size	- Тур	e III Sums of S	Squares	
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:Treatment B:Rep	96.5124 14.1249	13 3	7.42403 4.70831	1.15 0.73	0.3481 0.5396
RESIDUAL	251.119	39	6.43896		
TOTAL (CORRECTED)	361.757	55			

All F-ratios are based on the residual mean square error.

The StatAdvisor

The ANOVA table decomposes the variability of Mean head size into contributions due to various factors. Since Type III sums of squares (the default) have been chosen, the contribution of each factor is measured having removed the effects of all other factors. The P-values test the statistical significance of each of the factors. Since no P-values are less than 0.05, none of the factors have a statistically significant effect on Mean head size at the 95.0% confidence level.

2003/04 Trials

Analysis of Variance for Mean lettuce head weight - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:Treatment B:Replicate	0.13181 0.228318	10 6	0.013181 0.038053	2.72 7.84	0.0081 0.0000
RESIDUAL	0.291139	60	0.00485231		
TOTAL (CORRECTED)	0.651266	76			

All F-ratios are based on the residual mean square error.

Multiple Range Tests for Mean head weight by Treatment

Method: 95.0	-			
Treatment	Count	LS Mean	Homogeneous Gr	roups
1	7	0.402571	Х	
10	7	0.433429	XX	
3	7	0.435571	XX	
8	7	0.448571	XX	
11	7	0.465429	XXX	
7	7	0.474143	XXXX	
2	7	0.490714	XXX	
6	7	0.491429	XXX	
9	7	0.501429	XXX	
4	7	0.529857	XX	
5	7	0.547714	Х	
Contrast			Difference	+/- Limits

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 2	*-0 0881429	0 0744794
1 - 4 *-0.127286 0.0744794 1 - 5 *-0.145143 0.0744794 1 - 6 *-0.088571 0.0744794 1 - 7 -0.0715714 0.0744794 1 - 9 *-0.0988571 0.0744794 1 - 9 *-0.0988571 0.0744794 2 - 0 0.050571 0.0744794 2 - 3 0.0551429 0.0744794 2 - 6 -0.00712866 0.0744794 2 - 6 -0.00714286 0.0744794 2 - 6 -0.01071433 0.0744794 2 - 7 0.0165714 0.0744794 2 - 8 0.0421429 0.0744794 2 - 10 0.0372857 0.0744794 2 - 10 0.0372857 0.0744794 3 - 5 *-0.112143 0.0744794 3 - 6 -0.0385714 0.0744794 3 - 7 -0.038571 0.0744794 3 - 8 -0.0112866 0.0744794 4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
1 - 8 -0.046 0.0744794 $1 - 10$ -0.0308571 0.0744794 $1 - 11$ -0.0308571 0.0744794 $2 - 3$ 0.0551429 0.0744794 $2 - 5$ -0.0571 0.0744794 $2 - 6$ -0.0391429 0.0744794 $2 - 7$ 0.0165714 0.0744794 $2 - 8$ 0.022857 0.0744794 $2 - 7$ 0.0165714 0.0744794 $2 - 7$ 0.0165714 0.0744794 $2 - 8$ 0.022857 0.0744794 $2 - 9$ -0.0107143 0.0744794 $2 - 10$ 0.052857 0.0744794 $2 - 10$ 0.052857 0.0744794 $3 - 5$ $*-0.112143$ 0.0744794 $3 - 5$ $*-0.1385714$ 0.0744794 $3 - 7$ -0.0385714 0.0744794 $3 - 7$ -0.0385714 0.0744794 $3 - 7$ -0.0385714 0.0744794 $3 - 7$ -0.0385714 0.0744794 $4 - 6$ 0.0384286 0.0744794 $4 - 7$ 0.0385714 0.0744794 $4 - 5$ -0.0178571 0.0744794 $4 - 6$ 0.0384286 0.0744794 $4 - 7$ 0.0385714 0.0744794 $4 - 8$ $*0.0942857$ 0.0744794 $4 - 7$ 0.0385714 0.0744794 $4 - 7$ 0.0384286 0.0744794 $4 - 7$ 0.0384286 0.0744794 $4 - 8$ $*0.0942867$ 0.0744794 $4 - 10$ $*0.02628571$ 0.0744794 5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3 = 4 $*-0.0942857$ 0.0744794 $3 = 5$ $*-0.112143$ 0.0744794 $3 = 6$ -0.058571 0.0744794 $3 = 7$ -0.0385714 0.0744794 $3 = 8$ -0.013 0.0744794 $3 = 10$ 0.00214286 0.0744794 $3 = 11$ -0.0298571 0.0744794 $4 = 5$ -0.018571 0.0744794 $4 = 6$ 0.0384286 0.0744794 $4 = 7$ 0.0557143 0.0744794 $4 = 6$ 0.0384286 0.0744794 $4 = 7$ 0.0284286 0.0744794 $4 = 9$ 0.0284286 0.0744794 $4 = 9$ 0.0284286 0.0744794 $4 = 10$ $*0.0964286$ 0.0744794 $5 = 6$ 0.0562857 0.0744794 $5 = 6$ 0.0735714 0.0744794 $5 = 7$ 0.0735714 0.0744794 $5 = 8$ $*0.0991429$ 0.0744794 $5 = 10$ $*0.142286$ 0.0744794 $5 = 11$ $*0.142286$ 0.0744794 $6 = 7$ 0.0172857 0.0744794 $6 = 10$ 0.058 0.0744794 $6 = 10$ 0.0255714 0.0744794 $7 = 8$ 0.0228571 0.0744794 $7 = 10$ 0.0407143 0.0744794 $7 = 11$ 0.00871429 0.0744794 $7 = 11$ 0.00871429 0.0744794 $8 = 10$ 0.01588 0.0744794 $9 = 10$ 0.0744794			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3 - 6 -0.0558571 0.0744794 $3 - 7$ -0.0385714 0.0744794 $3 - 8$ -0.013 0.0744794 $3 - 10$ 0.00214286 0.0744794 $3 - 11$ -0.0298571 0.0744794 $4 - 5$ -0.0178571 0.0744794 $4 - 6$ 0.0384286 0.0744794 $4 - 7$ 0.0557143 0.0744794 $4 - 8$ $*0.0812857$ 0.0744794 $4 - 9$ 0.0284286 0.0744794 $4 - 10$ $*0.0964286$ 0.0744794 $4 - 11$ 0.0642866 0.0744794 $5 - 6$ 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 10$ $*0.1142866$ 0.0744794 $5 - 10$ $*0.1142866$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 7$ 0.02255714 0.0744794 $6 - 11$ 0.025 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.02528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 10$ 0.0688 0.0744794			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 - 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 - 6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0744794
4 = 5 -0.0178571 0.0744794 $4 = 6$ 0.0384286 0.0744794 $4 = 7$ 0.0557143 0.0744794 $4 = 8$ $*0.0812857$ 0.0744794 $4 = 9$ 0.0284286 0.0744794 $4 = 10$ $*0.0964286$ 0.0744794 $4 = 11$ 0.0644286 0.0744794 $5 = 6$ 0.052857 0.0744794 $5 = 7$ 0.0735714 0.0744794 $5 = 8$ $*0.0991429$ 0.0744794 $5 = 10$ $*0.114286$ 0.0744794 $5 = 11$ $*0.0822857$ 0.0744794 $6 = 7$ 0.0172857 0.0744794 $6 = 7$ 0.0282871 0.0744794 $6 = 10$ 0.026 0.0744794 $6 = 11$ 0.026 0.0744794 $7 = 8$ 0.0228571 0.0744794 $7 = 10$ 0.0272857 0.0744794 $7 = 11$ 0.00871429 0.0744794 $8 = 9$ -0.0528571 0.0744794 $8 = 10$ 0.01588 0.0744794 $8 = 11$ -0.0168571 0.0744794 $9 = 10$ 0.068 0.0744794		0.00214286	0.0744794
4 - 6 0.0384286 0.0744794 $4 - 7$ 0.0557143 0.0744794 $4 - 8$ $*0.0812857$ 0.0744794 $4 - 9$ 0.0284286 0.0744794 $4 - 10$ $*0.0964286$ 0.0744794 $4 - 11$ 0.0644286 0.0744794 $5 - 6$ 0.0552857 0.0744794 $5 - 7$ 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0128571 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.025714 0.0744794 $7 - 10$ 0.00871429 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ 0.068571 0.0744794 $9 - 10$ 0.068 0.0744794			0.0744794
4 - 7 0.0557143 0.0744794 $4 - 8$ $*0.0812857$ 0.0744794 $4 - 9$ 0.0284286 0.0744794 $4 - 10$ $*0.0964286$ 0.0744794 $4 - 11$ 0.064286 0.0744794 $5 - 6$ 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ 0.068 0.0744794			
4 - 8 $*0.0812857$ 0.0744794 $4 - 9$ 0.0284286 0.0744794 $4 - 10$ $*0.0964286$ 0.0744794 $4 - 11$ 0.064286 0.0744794 $5 - 6$ 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.00871429 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0151429 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ 0.00871429 0.0744794 $9 - 10$ 0.068 0.0744794	4 - 6		0.0744794
4 - 9 0.0284286 0.0744794 $4 - 10$ $*0.0964286$ 0.0744794 $4 - 11$ 0.0644286 0.0744794 $5 - 6$ 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0026571 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 10$ 0.0266 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	4 - 7	0.0557143	0.0744794
4 - 10 $*0.0964286$ 0.0744794 $4 - 11$ 0.0644286 0.0744794 $5 - 6$ 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.026 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 10$ 0.068 0.0744794	4 - 8	*0.0812857	0.0744794
4 - 11 0.0644286 0.0744794 $5 - 6$ 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.026 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0151429 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ 0.068 0.0744794	4 - 9	0.0284286	0.0744794
5 - 6 0.0562857 0.0744794 $5 - 7$ 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0428571 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794		*0.0964286	0.0744794
5 - 7 0.0735714 0.0744794 $5 - 8$ $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.0266 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	4 - 11	0.0644286	0.0744794
5 - 8 $*0.0991429$ 0.0744794 $5 - 9$ 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.0407143 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794		0.0562857	0.0744794
5 - 9 0.0462857 0.0744794 $5 - 10$ $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	5 - 7	0.0735714	0.0744794
5 - 10 $*0.114286$ 0.0744794 $5 - 11$ $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794		*0.0991429	0.0744794
5 - 11 $*0.0822857$ 0.0744794 $6 - 7$ 0.0172857 0.0744794 $6 - 8$ 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	5 – 9	0.0462857	0.0744794
6 $ 0.0172857$ 0.0744794 6 8 0.0428571 0.0744794 6 9 -0.01 0.0744794 6 10 0.058 0.0744794 6 11 0.026 0.0744794 7 8 0.0255714 0.0744794 7 9 -0.0272857 0.0744794 7 10 0.00871429 0.0744794 7 11 0.00871429 0.0744794 8 9 -0.0528571 0.0744794 8 10 0.0151429 0.0744794 8 11 -0.0168571 0.0744794 9 -10 0.068 0.0744794	5 - 10	*0.114286	0.0744794
6 - 8 0.0428571 0.0744794 $6 - 9$ -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	5 - 11	*0.0822857	0.0744794
6 - 9 -0.01 0.0744794 $6 - 10$ 0.058 0.0744794 $6 - 11$ 0.026 0.0744794 $7 - 8$ 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	6 - 7	0.0172857	0.0744794
6 10 0.058 0.0744794 6 11 0.026 0.0744794 7 8 0.0255714 0.0744794 7 9 -0.0272857 0.0744794 7 10 0.0407143 0.0744794 7 11 0.00871429 0.0744794 8 9 -0.0528571 0.0744794 8 10 0.0151429 0.0744794 8 -11 0.0168571 0.0744794 9 -10 0.068 0.0744794	6 – 8	0.0428571	
6 10 0.058 0.0744794 6 11 0.026 0.0744794 7 8 0.0255714 0.0744794 7 9 -0.0272857 0.0744794 7 10 0.0407143 0.0744794 7 11 0.00871429 0.0744794 8 9 -0.0528571 0.0744794 8 10 0.0151429 0.0744794 8 -11 0.0168571 0.0744794 9 -10 0.068 0.0744794	6 - 9	-0.01	0.0744794
7 - 8 0.0255714 0.0744794 $7 - 9$ -0.0272857 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	6 - 10	0.058	
7 - 9 -0.0272857 0.0744794 $7 - 10$ 0.0407143 0.0744794 $7 - 11$ 0.00871429 0.0744794 $8 - 9$ -0.0528571 0.0744794 $8 - 10$ 0.0151429 0.0744794 $8 - 11$ -0.0168571 0.0744794 $9 - 10$ 0.068 0.0744794	6 - 11	0.026	0.0744794
7 - 10 0.0407143 0.0744794 7 - 11 0.00871429 0.0744794 8 - 9 -0.0528571 0.0744794 8 - 10 0.0151429 0.0744794 8 - 11 -0.0168571 0.0744794 9 - 10 0.068 0.0744794	7 – 8	0.0255714	0.0744794
7 - 110.008714290.07447948 - 9-0.05285710.07447948 - 100.01514290.07447948 - 11-0.01685710.07447949 - 100.0680.0744794	7 – 9	-0.0272857	
7 - 110.008714290.07447948 - 9-0.05285710.07447948 - 100.01514290.07447948 - 11-0.01685710.07447949 - 100.0680.0744794	7 - 10		0.0744794
8 - 9-0.05285710.07447948 - 100.01514290.07447948 - 11-0.01685710.07447949 - 100.0680.0744794	7 - 11		
8 - 100.01514290.07447948 - 11-0.01685710.07447949 - 100.0680.0744794	8 - 9		
8 - 11-0.01685710.07447949 - 100.0680.0744794			
9 - 10 0.068 0.0744794			
9 - 11 0.036 0.0744794		0.036	0.0744794
10 - 11 -0.032 0.0744794			

• denotes a statistically significant difference.

Analysis of Variance	for Total c	cut of Broccoli	- Type III S	Sums of Squares
----------------------	-------------	-----------------	--------------	-----------------

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:Treatment B:Replicate	1.94381E8 3.17603E8	10 6	1.94381E7 5.29339E7	2.39 6.50	0.0186 0.0000
RESIDUAL	4.88554E8	60	8.14257E6		
TOTAL (CORRECTED)	1.00054E9	76			

All F-ratios are based on the residual mean square error.

Multiple Range Tests for Total cut by Treatment

Method: 95. Treatment) percent L Count	SD LS Mean	Homogeneous G	roups
10 9 1 3 7 8 11 2 6 5	7 7 7 7 7 7 7 7 7 7 7 7 7 7	13466.6 13932.6 13945.7 13982.9 14060.0 14115.1 14240.1 14405.7 16374.4 17937.1 18007.4	X X X X X X X X X X X X	
Contrast			Difference	+/- Limits
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			$\begin{array}{r} -460.0\\ -37.1429\\ *-4061.71\\ *-3991.43\\ -2428.71\\ -114.286\\ -169.429\\ 13.1429\\ 479.143\\ -294.429\\ 422.857\\ *-3601.71\\ *-3531.43\\ -1968.71\\ 345.714\\ 290.571\\ 473.143\\ 939.143\\ 165.571\\ *-4024.57\\ *-3954.29\\ -2391.57\\ -77.1429\\ -132.286\\ 50.2857\\ 516.286\\ -257.286\\ 70.2857\\ 1633.0\end{array}$	$\begin{array}{c} 3051.0\\$

	+ 2 0 4 7 4 2	2051 0	
4 - 7	*3947.43	3051.0	
4 - 8	*3892.29	3051.0	
4 - 9	*4074.86	3051.0	
4 - 10	*4540.86	3051.0	
4 - 11	*3767.29	3051.0	
5 - 6	1562.71	3051.0	
5 - 7	*3877.14	3051.0	
5 - 8	*3822.0	3051.0	
5 - 9	*4004.57	3051.0	
5 - 10	*4470.57	3051.0	
5 - 11	*3697.0	3051.0	
6 - 7	2314.43	3051.0	
6 – 8	2259.29	3051.0	
6 - 9	2441.86	3051.0	
6 - 10	2907.86	3051.0	
6 - 11	2134.29	3051.0	
7 – 8	-55.1429	3051.0	
7 – 9	127.429	3051.0	
7 - 10	593.429	3051.0	
7 - 11	-180.143	3051.0	
8 - 9	182.571	3051.0	
8 - 10	648.571	3051.0	
8 - 11	-125.0	3051.0	
9 - 10	466.0	3051.0	
9 - 11	-307.571	3051.0	
10 - 11	-773.571		

* denotes a statistically significant difference.

Appendix v - Acknowledgments

The assistance of John and Stephen Hill, for their co-operation in nursery trial work, is gratefully acknowledged.

Serve-Ag staff who contributed to this project included Tim Hingston, Sarah Badcock, Jan Croswell, Mary Trebilco, Pam Cox, Gloria Packett, David Curtis, Kate Smith and Karon Faulkner. Peter Aird, Senior Serve-Ag Agronomist, advised on crop agronomy.

Department of Primary Industries, Water and Environment staff who contributed to this project included Felicity Wardlaw, Rebecca Ashley, Phil Gardham and Andrew Bishop.

A number of companies supplied product free of charge for use in the trials. Their contribution to the project is gratefully acknowledged.

Dolf de Boer supplied a *Rhizoctonia* culture for use in pot trials. Unfortunately, the sample arrived after pot trials had already commenced.