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SYNOPSIS 
A study of a sweet corn production system at The Lagoon, Bathurst, NSW was 
undertaken to determine if there was sufficient variation in sweet corn yield and quality 
to make Precision Agriculture (PA) practical in the industry.  A large variance in yield 
and quality parameters was observed.  The range in yield response was spatially coherent 
giving growers the option to manage the crop in management classes or site-specifically.  
The amount of nitrogen used in the system and the magnitude of yield variation provides 
some very obvious and easy approaches to cost saving through variable-rate fertiliser 
application.  However, adoption of PA will be stilted if adequate support is not provided 
through variable rate fertiliser decision support systems.  This requires models for crop 
growth to be adapted or developed.  Preliminary modelling, with the spatial data set from 
this study, indicates that these models could be very effective in decision-making 
systems.  The lack of a yield or quality sensor is also an issue as growers are unable to 
effectively determine the impact of any change in management.   
 
This project has been facilitated by HAL in partnership with AUSVEG and has been 
funded by the Vegetable R&D levy. The Australian Government provides matched 
funding for all HAL’s R&D activities.” 
 

         
 
Disclaimer 
Any recommendations contained in this publication do not necessarily represent current 
HAL Limited policy. No person should act on the basis of the contents of this 
publication, whether as to matters of fact or opinion or other content, without first 
obtaining specific, independent professional advice in respect of the matters set out in this 
publication. 
 
© This work is copyright. Apart from any use permitted under the Copyright Act 1968, 
no part may be reproduced by any process without the written permission of the 
publishers. 
 



 

 

Media Summary 
 
Stepping into Precision Agriculture in the Australian sweet corn industry 
 
AUSVEG and HAL Ltd have recently funded an investigation into the viability of 
adopting site-specific crop management and Precision Agriculture in Australian sweet 
corn production systems.  The study was conducted by The Australian Centre for 
Precision Agriculture at The University of Sydney.  The study showed that the degree of 
variation in yield within a field was similar to that in other crops where site-specific crop 
management has been successfully adopted.  At the study site near Bathurst, NSW, the 
yields at individual sites within three fields ranged from 6 to 30 ton.ha-1.  A large range in 
yield translates to a large range in input requirements by the crop at each site.  This gives 
growers the opportunity to better manage inputs, particularly nitrogen, by variably 
applying fertiliser at each location in the field based on the yield potential.  Some simple 
economic analysis showed possible savings in excess of $100 per hectare on nitrogen 
budgets.  The opportunity for site-specific management was further increased by the 
presence of large spatial trends in crop yield which makes variable rate management 
easier. 
 
The variation in cob quality was also measured.  It was also unclear if the variance in cob 
quality was great enough for concern to the processing sweet corn industry.  However the 
range in quality observed is likely to have an effect on the marketability of production in 
fresh market sweet corn production systems.  The study showed that by manipulating 
yield it should be possible to optimise quality at each site in the production system.  This 
could be done by varying management spatially in the fields. 
 
Of the new technologies used by the researchers in the study, sensors that measure 
canopy and crop biomass in early and mid-season growth appear to be the most useful for 
any growers considering the move into site-specific crop management.  Spatial crop 
modelling appears to be a potentially useful tool for site-specific management, if existing 
models can be successfully adapted and the correct input information, particularly 
information on plant density, can be cheaply and easily collected. 
 
Precision Agriculture is viable in the Australian sweet corn industry and the opportunities 
exciting for improved management if the industry provides support to growers, 
particularly through decision-support systems. 
 



 

 

Technical summary 
For site-specific crop management (SSCM) to be viable a production system must exhibit 
a sufficient magnitude and spatial structure in crop response to make differential 
management economically feasible.  The crop response may be a yield or quality 
response.  Prior to committing to larger projects, a preliminary investigation into the 
variability within sweet corn production systems was undertaken.  The intention was to 
quantify how variable crop response was, which spatial technologies are most applicable 
to variable rate management and how successful decision support systems to assist 
growers may be. 
 
Both yield and quality attributes exhibit large ranges and spatial coherence.  Yield in 
particular was spatially structured providing opportunities for SSCM.  Quality attributes 
exhibited less spatial structure but enough to suggest that they could be managed 
spatially.  The range in yield response (from 6 to 30 ton.ha-1) in a uniformly treated 
production system, provides opportunities to better manage fertiliser.  A simple economic 
analysis, based on applied nitrogen and possible yield response, shows potential savings 
on fertiliser of $122 - $243 per hectare in the three fields.  This is without incorporating 
any spatial management.  Further savings are possible when information from mid-season 
biomass sensors is included. 
 
An analysis of the applicability and best way of constructing management classes was 
undertaken.  Information from early and mid season canopy sensors provides the best 
data for constructing management classes.  This indicates that current on-the-go variable-
rate fertiliser systems, such as the N-sensor, Greenseeker and CropCircle, may be readily 
adapted to these production systems and negate the need for management classes.  
Information from soil sensors did not assist in agronomic decision making, possibly due 
to the presence of irrigation (removing issues associated with variation caused by variable 
soil moisture holding) and probable excess nutrition in the system.  For any growers 
interested in investing in SSCM, a proximal canopy sensor or aerial image acquisition 
appears to be the best option (provided sufficient spatial agronomic support is available). 
 
To be used effectively these variable rate fertiliser systems need decision support systems 
which in turn require good crop models to predict potential yield and fertiliser 
requirements.  Preliminary modelling indicates that canopy sensor data, coupled with 
plant density data, does provide good predictions of yield.  This data is preliminary but 
concurs with recent published information that looks at adapting maize crop models to 
sweet corn.  It appears that information on plant density is a prerequisite for progress in 
this area.  Non-destructive methods for measuring or estimating plant density are a 
priority.  Modelling of the yield-quality interaction was also undertaken.  The models 
indicate that quality, in this case cob length, can be manipulated by managing yield.  This 
may be of more significance in the fresh market sweet corn industry. 
 
The adoption of new technologies and methodologies is dependent on growers being able 
to recognise a positive return on investment.  Without a yield or quality sensor at harvest 
it is difficult to quantify the effect of SSCM.  The development/adaptation of yield 



 

 

sensors for a sweet corn harvester is a major step in making PA work in sweet corn.  If a 
viable sensor is available/developed, the effect should be positive as the harvest is 
centrally contracted.  Therefore, a few sensors will be able to service a large proportion 
of the industry.  The vertical integration of the industry and interest by the processor, 
Simplot Australia, in SSCM means that advances in this area should be well received and 
adopted by growers. 
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Objectives of the Project 
This project is an investigation to quantify the amount of variation in sweet corn 
production systems and the opportunities for future research and application of 
differential management strategies. The project has three main sections; 

a) collection of spatial environmental data prior to crop production, 
b) collection of spatial crop production information during the growing season; and 
c) synthesis and data anlaysis of the environmental and crop data 

 
Reporting for the project will be in two sections; 

i) Quantification of the inter- and intra-field variation in crop growth and production 
(biomass, yield and quality attributes) 

ii) Analysis and discussion of management options and economics associated with 
the observed variation. 

 
Whilst this constitutes the final report for the completion of the contracted project 
VG07035, there will be a significant addendum to the report to be submitted by 
December 31, 2008.  As indicated in Milestone 1 of VG07035 a research project is being 
undertaken on this data by a final year student in the B.Sc.Agr degree at The University 
of Sydney.  The research project will investigate more thoroughly interactions between 
crop quality and the environmental data sets.  A report on this work will be submitted as 
an addendum to this report. 

 

Introduction, including review of literature 
 
Sweet corn in Australia is grown for both the fresh and processed food market.  In NSW 
the majority of corn grown for processing is done under licence to Simplot Australia Ltd.  
Production is strongly vertically integrated with Simplot being involved in the planting 
and harvesting of the crop.  They also provide agronomic assistance to growers during 
the season. It is the grower’s responsibility to manage the crop from sowing until harvest.   
 
The profitability of the processed sweet corn sector relies on production efficiencies both 
on-farm and at the factory.  The state production needs to be managed to ensure a regular 
supply of corn to the factory so that the factory operates optimal.  New technologies are 
now available which assist growers in managing variation in their production system.  
Crop models and differential decision making are also being used to tailor production to 
specific quality parameters and improve timeliness of production.  To date these 
technologies and methodologies, collectively termed ‘Precision Agriculture’, have not 
been used in the Australian sweet corn industry. 
 
Despite the similarities with broadacre maize production, there has been very little 
published material on the application of precision agriculture to sweet corn.  Precision 
Agriculture is a philosophy that seeks to improve the resolution (either spatial and/or 
temporal) of decision making.  Generally this is in response to observe variance in 
production.  The scientific literature has no reports of the level of yield and quality 



 

 

variation that is expected in an irrigated sweet corn production system.  Therefore the 
first aim of this research was to establish how much variation in production occurs in the 
production system by measuring crop growth parameters during the season and yield and 
quality parameters at harvest.  The hypothesis from discussion with growers, agronomists 
and from previous estimations was that yield variation is sufficient to warrant variable 
rate management, particularly fertiliser. 
 
Variation in production provides opportunity for differential management however 
effective decision support systems are needed to translate variation into agronomic 
decisions.  These decision support systems are often based on crop growth models.  At 
the submission of this project there was no crop growth model for sweet corn.  The first 
sweet corn crop model has recently been published by Lizaso et al., (2007), which was 
adapted from the CERES maize model.  This model will provide a significant boost to 
any PA adoption.  Another recent paper (Ma et al., 2007) provided another piece in the 
decision support puzzle by linking canopy responses to N rates.  Sweet corn production 
relies on a large amount of side dressed fertiliser thus effective yield calibration models at 
side dressing, driven by canopy sensor data, will be able to deliver considerable 
production efficiencies and profitability. 
 
Despite this link between canopy response and nitrogen requirement there has been no 
research into the best approach to differential management.  Real-time on-the-go sensors 
are available for variable rate application of inputs (fertiliser) and have been used 
effectively in broadacre crops.  Similarly, the management class (zone) concept has also 
been effectively applied in broadacre crops for management.  The preferred approach i.e. 
the one that gives the most ‘bang for a buck’, is unclear in sweet corn production.  This is 
the second aim for this project – to identify how management might be implemented 
given that production is variable.  It is possible that yield and quality (and pssibly 
different quality parameters) may need different strategies for management.  However 
until the drivers of variation are identified management is blind. 
 
Gaining a greater understanding of how production varies, what drives the variationand 
possible management strategies should assist all members of the value chain.  Growers 
should achieve improved production efficiencies which will produce a more uniform and 
predictable level of production.  It should also reduce the environmental footprint of 
production (e.g. less loss of fertiliser to the environment) which is a social good.  
Improved production will also assist the processor with improved harvesting logistics as 
well as operating capacity within the factory. 
 



 

 

Materials & methods 

Site Selection 

The project initially aimed at monitoring 5 fields of Sweetcorn at The Lagoon, near 
Bathurst, NSW.  Two fields, Pivot 2-3 and Pivot 4-5, were scheduled to be early sown 
with the variety Challenger and the other three fields, Post Office, Pivot 1 and 
Bidgeribbin, to be late sown with the variety Punch.  The difference in sowing dates did 
create problems with the mid-season sampling and the collection of crop biomass data 
(Cropcircle sensor and aerial imagery).  When the biomass counts were taken (January 
16-18) the Challenger crop was already beginning to tassel and had reached full canopy 
closure.  However, the other three fields still had very open canopies.  The problems 
associated with analysing imagery after full canopy closure lead the research team to 
focus more efforts at harvest on Post Office, Pivot 1 and Bidgeribbin fields.  Mid-season 
tissue N analysis was also confined to these three fields. 
 
All five fields received the same fertiliser treatment which consisted of; 

i) 50 kg.ha-1 urea pre-sowing (46% N) 
ii) 240 kg.ha-1 of NPK + Zn at sowing (15% N) 
iii) 2 L.ha-1 foliar NPK + Cu + Zn 30 days after sowing 
iv) 200 kg.ha-1 urea as a side dressing (46% N) 

which is approximately 150-160 kg of nitrogen applied per hectare. 
 

Part I - Quantification of variation in production 

Data Collection:   

Sensors 
High resolution spatial data on soil and topographic variation was collected in September 
2007 by performing an on-the-go survey with two soil sensors (Geonics EM38 and 
Geonics EM31) and a carrier-phase GPS receiver (Omnistar HP GPS).  This provided 
information on the apparent electrical conductivity (ECa) of the soil to two depths, 0 - 1.5 
m and 0 - 6 m.  The ECa signal is affected by primarily by the clay content, clay 
mineralogy and moisture content of the soil.  (The ECa signal is also strongly affected by 
salinity when present.  The ECa data indicated that salinity was not an issue in this area.)  
The Omnistar HP-GPS data was used to map elevation (to an accuracy of < 20 cm) and 
geo-reference the ECa data (accuracy < 10 cm).  It was intended to collect soil 
information using a gamma-radiometer and an on-the-go pH sensor.  Attempts to run 
these sensors were hampered by mechanical and weather problems.   
 
A vehicle-mounted crop biomass sensor (CropCircle, Holland Scientific, Lincoln, NE, 
USA) was run over the paddocks from late December to late-January.   Initially the 
sensor was mounted on a 4WD and run over three fields (Pivot 1, Bidgeribbin and Post 
Office) before the sensor was transferred to the fertilizer rig.  The 4WD could not be run 



 

 

through Pivot 2-3 and Pivot 4-5 fields in late December due to the height of the crop.  
Sensor data was collected from all 5 fields during side-dressing from December 31 to 
January 8.  After side-dressing, the CropCircle sensor was mounted onto the spray rig and 
run when the spray rig was operational.  Unfortunately no useful information was 
gathered at this time.  The biomass sensor information was geo-referenced with a Garmin 
GPS76 GPS receiver (95% CEP of < 15 m however it is generally more accurate when 
moving and a smoothing filter is applied). 
 
A 4-band multi-spectral aerial image (1.8 m2 pixels) of the 5 fields was taken on January 
15th by Specterra.  The image was register with ground control points gathered when 
surveying with the ECa sensors. 
 

Manual Field Sampling. 
Soil cores were extracted to a depth of 1 m in October 2007.  The location of soil samples 
was determined using latin-hyper cube approach of Minasny and McBratney (2006) with 
the location coordinates, topographic and ECa information collected in September as 
inputs into the model.  This approach looks at the variation in the input variables (soil 
types and topography) and stratifies the samples to take account of the observed 
variation.  The location coordinates were used to spatially distribute the samples across 
the 5 fields. Soil core locations were geo-referenced with the Omnistar HP-GPS. 
 
Mid season crop measurements were taken from all 5 fields on January 16-18.  
Measurements consisted of plant counts (density) and measurements of plant height (to 
the top node on the primary culm) and were geo-referenced with a Gamin GPS76 
receiver.  Measurements at each point were taken within an area 2 m along the rows by 3 
rows (row width was 0.75 m = 2.25 m).  A width of 3 rows was used as it is half the 
seeding width (6 row planter).  Measurements were taken from the inside to the outside 
row to compensate for variance in the 6-row planter1.  In three of the fields (Bidgeribbin, 
Pivot 1 and Post Office) heights and counts of both primary and secondary culms were 
counted.  A sub-sample of 60 plants, from several fields, which covered the range of 
heights measured were uprooted and brought back to Sydney to create a calibration 
between plant mass and plant height.   
 
For the three late-sown fields (Bidgeribbin, Pivot 1 and Post Office), plant tissue samples 
were taken at silking to measure the nitrogen content in the plants.  The whole leaf 
opposite the primary cob was sampled with 4-6 leaves taken per site.  Again, sampling 
was done across three rows from the inside to the outside of the 6 row planter.  Sites were 
identified from management classes formed from clustering the available plant 
(CropCircle and aerial imagery) and soil (topographic and ECa) data (see the protocol of 
Taylor et al., 2007).  However, the final location of the sample was influenced by 
accessibility to the crop and usually confined to short distances (a minimum of 10 m) 
from easy access points such as irrigator swaths or pivot wheel tracks.  Sample location 
was geo-referenced with a Garmin GPS76. 
 
                                                 
1  Differential application of fertilizer at sowing across the planter was an issue in some fields. 



 

 

Harvest data was collected in late February and early March.  Harvest sampling was 
restricted to the three late sown fields.  Samples were taken from the same area as the 
mid-season biomass samples (2 m by 3 rows) but not at the same location.  The harvest 
sampling sites were manually selected based on the management classes formed from the 
mid-season crop biomass data and the pre-season soil data and by access to the field.  At 
each sample site primary cobs and secondary cobs were picked into two separate bags.  
The sample site was geo-referenced with a Garmin GPS76 receiver.  In the farm shed the 
primary cobs were roughly husked (to approximate the process within the harvester), 
individually measured for length and diameter and then collectively weighed on a per 
sample site basis.  This provided data on yield (mass) and quality (cob length and cob 
diameter).  The secondary cobs were also counted and collectively weighted for each 
sample site and the presence of large secondary cobs noted.  Secondary cobs were not 
dehusked thus their weight includes some overestimation error from excess leaf material.  
Grain moisture was measured as another quality indicator.  Grain moisture samples were 
taken from two fields (Bidgeribbin and Post Office) using the protocol of Simplot.  This 
consisted of removing the grain from one side of the cob on a subsample of 15 cobs from 
each sample site.  The grain was weighed wet before being placed in an oven and then 
weighed dry.  The presence of any insect damage was also recorded for the 15 subset 
corn cobs at each sample site.  For Pivot 1, time and oven space constraints did not 
permit this approach.  Instead cob (grain) moisture was calculated by weighting a 
subsample of 15 whole cobs from each sample site, then drying and reweighing the entire 
cob. 
 

Laboratory Analysis. 

Soil Analysis 
Soil cores were analysed in the laboratory for particle size distribution (clay, silt and sand 
%), pH and EC in both the topsoil (0-30 cm) and subsoil (60-90 cm) fraction.  This was 
done using standard procedures from the Australian Soil and Land Survey manual 
(McDonald et al., 1990). 
 

Midseason Crop Samples 
For the whole plant samples collected, the roots of the plants were cut off and the height 
and fresh weight of the plants recorded on arrival back in Sydney (approximately 4 hours 
after collection).  The plants were then oven dried and reweighed to obtain dry weights.  
This data was used to construct a transfer function to predict the above ground biomass 
from the plant height data (Appendix A).  It was assumed that the response would be 
curvilinear but in fact was linear and there is no difference in analysing the height and 
fresh weight data. 
 
The plant leaf tissue samples were immediately dried in an oven (60ºC).  The leaves were 
then roughly crushed before a sub-sample (~40-60% of total mass) was placed in a coffee 
grinder and ground.  The ground material was passed through a 40 micron sieve to form 
the final samples.  Samples were sent to The Waite Institute in Adelaide where the 



 

 

samples were analysed for N using the combustion technique with an Elementar 
Instrument. 
 

Data Analysis 

Map production 
The sensor data (soil and crop circle data) was collected as point data.  The data was 
cleaned and then interpolated using local kriging (after the method of Taylor et al., 2007).  
A standard grid was used for all interpolations.  The spectral data for each band of the 
aerial image (Blue, Green, Red and Near-Infrared (NIR)) was also extracted directly from 
the image to the same grid. 
 
All data was imported into ArcMap 9.2 (ESRI, Redlands, Ca, USA) and displayed in 
raster format.  This resulted in: 

3 soil/landscape layers – ECa-EM38 (0-1.5 m depth response), ECa-EM31 (0-6 m 
depth response) and elevation 
3 canopy response layers – CropCircle data from late December (All 5 fields) and 
early-mid January (3 fields only) and a multi-spectral aerial image (mid January) 

 
The manual sample data – soil core data, midseason crop counts/heights, plant tissue N 
data and harvest yield and quality data were imported and displayed in a point (vector) 
form. 
 

Spreadsheet Construction 
For each sampling period (midseason biomass, plant tissue N at silking and harvest data) 
the respective data was paired with the georeferenced location from the Garmin GPS76.  
Locations were stored in both Latitude and Longitude (decimal degrees, WGS84) and 
Eastings and Northings (metres, WGS84 UTM Zone 55S).  The interpolated response 
from the soil sensors, crop sensors and aerial imagery was extracted onto each sample 
location within ArcMap (ESRI, Redlands, Ca, USA).  The management class in which 
the sample was located for each of the 6 management class models (see below) was also 
extracted in ArcMap.  Since sampling was performed at different locations at the 
different sampling times a separate spreadsheet was constructed for the biomass, plant 
tissue N and harvest measurements.  The final spreadsheets contained location data, the 
measurement data, imagery and soil sensor data and management class model data.  The 
aerial imagery was extracted as 4 bands (blue, green, red and NIR) and converted into the 
Normalised Differences Vegetative Index (NDVI) [NDVI = (NIR-Red)/(NIR+Red)].  
The Cropcircle data was recorded as NDVI.  Where relevant, the data, e.g. the plant count 
data, was converted from plot units (4.5 m2) into hectare units. 
 



 

 

Non-spatial data analysis 
The distribution of the manually sampled data at all times was plotted in JMP v7 (SAS 
Institute, Cary, NC, USA).  The field means and coefficient of variation are provided in 
tabular form.  A histogram plot of the data from each field is given in Appendix B. 
 

Geostatistical analysis 
Data from the three late sown fields were aggregated together.  This was done to ensure 
there were sufficient data (> 100) for variogram analysis.  Variogram analysis was 
performed using Vesper (Minasny et al., 2005) to identify any spatial dependency in the 
data.  The Cambardella Index (Cambardella et al., 1994) and Mean Correlation Distance 
((MCD) (Han et al., 1994) calculated from the variogram parameters to quantify the 
spatial response. These indices give an indication if an attribute is likely to have enough 
variation and enough spatial structure to permit variable rate management.  (See 
Appendix C for a brief description of variogram analysis, the Cambardella Index and 
MCD).   
 
The yield data was kriged onto the grid of the three survey fields (Post Office, 
Bidgeribbin and Pivot 1) using the global variogram option in Vesper.  Data was 
imported into and displayed in ArcMap. 
 

Management Class Analysis 
Management classes were derived from the environmental (ECa-EM38, ECa-EM31 and 
Elevation) and crop canopy response information (CropCircle and aerial imagery).  Three 
different approaches were tried  

a) only using the soil and elevation information 
b) only using the crop information, and 
c) using all available information 

 
All three approaches used the protocol of Taylor et al., 2007 in constructing the 
management classes.  For each field, 2 and 3 management classes were defined.  This 
gave six combinations for each field; 

i) Soil2  
ii) Soil3  
iii) Crop2  
iv) Crop3  
v) All2  
vi) All3  

 
The sample sites for all manually collected crop data (midseason biomass measurements, 
harvest counts) were then allocated to the 6 combinations of management classes within 
each field.  The effectiveness of the derived management classes was determined by 
calculating the amount of variation explained by the each management class combination 
using an ANOVA.  Since sample size per management class is not equal the adjusted r2 
statistic was used to determine the amount of variation in crop response that was 



 

 

explained by the different management classes.  To determine the best classes the 
adjusted r2 values for the 6 different classes were ranked from 1 to 6 (with 1 being the 
highest r2 value).  The mean rank and the standard deviation of rank across all crop 
parameters was calculated and plotted after the method of Laslett et al., 1987.  This 
analysis was done for each individual field and on the pooled data from all three fields.   
 
The best management class models (Crop2 and Crop3 – see results) were then used to 
identify differences in response between the management classes.  This was done by 
using the management classes as a treatment effect in an ANOVA.  The response for the 
manually sampled data at the three sampling times (midseason biomass, silking plant N 
and harvest) are presented in a table form with an indication of whether the response was 
statistically different between management classes.  Differences can only be compared 
within management class models (e.g. Crop2-Class 1 and Crop2-Class 2) not between 
different models 
 

Part II - Management Options 

 
Within season management of crops is aided by decision support systems that are able to 
accurately predict yield and/or quality of a crop during the season.  This permits growers 
to alter input rates to try and achieve the optimal return on production.  In most cases the 
dominant inputs are fertiliser (N) and irrigation.  Shortly after the commencement of this 
project the first adapted crop model for sweet corn production was published (Laziso et 
al., 2007).  This model used plant density, fresh ear weight and dry ear weight as 
predictors for yield.   
 
Two preliminary analyses of the ability to predict yield and quality in this production 
system were undertaken.   
 

Yield prediction model 
The first approach was to predict yield from the midseason NDVI and plant density data.  
This was an attempt to simulate how well midseason information could be used to predict 
final yield potential.  When accurate predictions of final yield potential mid season can be 
made this information can be coupled with crop growth models to drive variable rate 
applications.  In this production system both moisture (through irrigation and rainfall) 
and nitrogen (see results of plant tissue N analysis) were not considered to be limiting.  
Yield was assumed to have reached full potential given the environmental and managerial 
conditions of production. 
 
Yield was predicted as both absolute and relative field values.  The yield between Pivot 1 
and the other two fields was statistically different (Table 3) therefore the yield within 
each field was standardised using the following equation. 
 



 

 

YieldMinimum-Yield Maximum
Yield Minimum - Yield Actual  Yield Relative =    Equation 1 

 
This allowed the model to be run at both the individual field scale and also on all the data 
aggregated across the production system.  The NDVI data from the January Cropcircle 
measurements and the January aerial imagery were chosen as inputs into the model.  The 
models were run with only one NDVI input at a time i.e. with either the Cropcircle or 
aerial NDVI but not together. 
 

Yield and quality interaction model 
The second modelling exercise was to construct a model which related the interaction 
between yield and quality in the production system.  When quality premiums are a 
principal determinant of profitability it may be useful for growers to be able to influence 
quality by managing yield.  If the yield potential is known (Model 1 above) then yield 
response may be managed through inputs to optimise quality.   
 
Using the harvest data, a regression equation was established to predict both yield and 
quality.  For this exercise cob length was chosen as the desirable quality trait to model.  
For both models the grain moisture % and plant density (at harvest) were used as inputs.  
For the yield model, cob length was also an input and, vice versa, for the quality model, 
yield was used as an input parameter.  Harvest is usually governed by grain moisture 
therefore this quality attribute can be considered a constant at harvest (~70-80%).  Plant 
density is set during establishment and cannot be altered by the grower (with the possible 
costly exception of plant thinning).  Therefore by manipulating yield the cob length can 
be altered i.e., if a desirable cob length is known then the optimum yield goal for given 
plant densities can be calculated.  For this model only absolute yield values were used. 
 
Both modelling exercises were undertaken in JMP.  Cross-validation has not been 
undertaken at this stage as the intention here is to investigate opportunities not provide 
definitive proof.  Further work on this data set will examine the robustness of the models. 
 

Results 

Map Production  

All maps, reports and data generated during the project are available through a WebGIS 
display portal at  

http://rural-gis.usyd.edu.au/VG07035/ 
 
A copy of the full GIS, with all relevant database and image files, in an ArcMap (ESRI, 
Redlands, Ca, USA)  platform is available from HAL (contact Helen Sargent for access).  
Selected layers are also shown in Appendix D. 
 



 

 

Part I - Quantification of variation in production 

Variation at the field-scale 

Variance of within season crop growth 
Mean plant counts were acceptable in all fields accept Bidgeribbin where the plant 
density in Bidgeribbin was sub-optimum and significantly lower than the other fields.  
For the early sown Challenger fields, the amount of variation in the fields was lower.  
This may be a consequence of measurement at a later stage in the season.  The other three 
fields also exhibit a decrease in the CV of plant density at harvest (Table 3).  Pivot 1 had 
the lowest level of variation in plant density of the three late-sown crops whilst Post 
Office and Bidgeribbin exhibited higher levels of variation in plant density (CV 28–
36%).  The pattern of variation observed in the plant density data was repeated in the 
mean height of the primary culms and plant fresh weight data.  There was a significant 
difference in plant height between the two different sowing dates/varieties but not within 
varieties.  This is an expected result.  Although not significantly different, the mean 
height in Pivot 1 was greater than in Post Office despite Post Office being sown before 
Pivot 1.  Bidgeribbin was the first of the three fields to be sown and had the highest mean 
plant height.  The percentage of tillering in the three late sown fields was uniform (~35%) 
despite the differences in plant density.  This may be a genetic effect given that moisture, 
nutrients and space (early in the season) are non-limiting. 
 
Pivot 1 exhibits much lower variation in crop growth (plant density and plant height) than 
Post Office and Bidgeribbin.   

Leaf Tissue N sampling. 
Sampling for plant tissue N at silking revealed that all three fields had a plant tissue N % 
of ~ 3.5% with no statistical difference between the fields (P<0.05).  The majority of data 
ranged from 3.2 % - 4% with only one location recording a value below 3.2 %.  This 
sample point (2.7 % N) was located in a waterlogged region of Post Office.  These plant 
tissue N values are high with the mean response in Bidgeribbin and Pivot 1 higher the 
accepted ranges quoted in the literature (2.6–3.50% in Reuter and Robinson (1997) and 
2.76–3.50 % in Martin-Prével et al., (1984)).  Once a physiological level of N in the plant 
tissue is reached (usually between 3-4 %) then there will be no further increase in plant 
tissue N % with increases in soil N and/or fertiliser (Shenker et al., 2003).  This result 
indicates that there is sufficient (and more than likely excess) N in the system for crop 
production.   
 
 



 

 

 
Table 1: Field mean, field standard deviation  and field coefficient of variation (CV) of midseason measurements of plant density, plant height, plant 
fresh weight and tiller % for the 5 target fields in the survey. 

Field No. of 
Samples 

Plant Density 
(‘000 plants/ha) 

Primary Culm Plant Heights (cm) Plant Fresh weights (ton/ha) Tiller % 

  μ σ CV μ σ CV μ σ CV μ
Bidge-
ribbin§ 

22 56.47a 20.36 36.05 123.47a 44.33 35.91 2.27 1.23 54.36 34.27

Pivot 1§ 
 

20 79.78b 12.44 15.60 104.09a 23.44 22.52 2.29 0.77 33.51 34.48

Post 
Office§ 

15 85.49b 23.87 27.92 96.27a 32.93 34.21 2.39 1.33 55.53 35.99

Pivot 
2&3† 

19 77.20b 10.87 14.08 209.91 b 46.36 22.08 4.18 1.18 28.25 ND

Pivot 
4&5† 

20 82.22b 10.04 12.22 203.04b 53.84 26.52 4.26 1.29 30.26 ND

§Variety Punch, late sowing 
†Variety Challenger, early sowing 
Different letters indicate significant differences (Tukey All Pairs test) within a field and a particular Management Class Models. 
ND = No data collected 
 
 
Table 2:  Number of samples per field and mean field response to the results of plant tissue N analysis. 
Field Number of 

samples
Mean Leaf 

Tissue N (%)
Lower 95% Upper 95%

Bidgeribbin 19 3.553a 3.446 3.660
Pivot 1 15 3.553a 3.433 3.674
Post Office 12 3.450a 3.316 3.584
Different letters indicate significant differences (Tukey All Pairs test) within a field and a particular Management Class Models. 
 
 



 

 

 
Table 3: Field mean and field coefficient of variation (CV) of harvest measurements of primary cob yield, plant density, secondary cob yield and % of 
plants with secondary cobs for the 3 harvest target field.  Mean yield values recorded by Simplot are given in brackets. 
Field No. of 

Samples 
Yield from 1º Cobs 

(ton/ha) 
Plant Density 

(‘000 plants/ha) 
Yield from 2º Cobs 

(ton/ha) 
Plants with 

2º Cobs 
  μ CV μ CV μ CV %

Bidge-
ribbin 

61 19.08a 
(19.8) 

23.90 64.70a 16.83 2.86a 50.83 67.00

Pivot1 
 

26 22.62b 

(21.18) 
15.45 83.33b 9.67 1.71b 43.78 63.08

Post 
Office 

30 16.16a 
(16.4) 

32.57 72.89c 15.12 2.73a 49.37 82.62

Different letters indicate significant differences (Tukey All Pairs test) within a field and a particular Management Class Models. 
 
 
Table 4: Field mean and field coefficient of variation (CV) of harvest quality measurements of cob diameter, cob length, grain moisture and insect 
damage for the 3 harvest target field 
Level Number 

of sites 
Cob Diameter (mm) 

 
Cob Length (mm) 

 
Grain Moisture (%) Insect 

damage 
  μ CV Site σ μ CV Site σ μ CV %

Bidge-
ribbin 

61 53.82a 5.15 5.34 189.73a 6.46 21.24 75.46 3.40 66.34

Pivot 1 
 

26 52.82a 4.76 4.86 181.55b 6.11 20.87 73.02‡ 1.75‡ NR

Post 
Office 

30 48.98b 10.54 6.09 173.72b 11.09 25.15 75.85 4.46 57.95

Site σ is the mean standard deviation of the measurements at each site (not the variance between sites within the field) 
‡ based on whole cob measurements not subsamples of grain cut from cob. 
Different letters indicate significant differences (Tukey All Pairs test) within a field and a particular Management Class Models. 
 
 



 

 

 

Variance of Yield measurements 
The yields measured by hand sampling across the three fields ranged from 5 - 30 ton.ha-1, 
with all fields 18-20 ton.ha-1.  Pivot 1 field exhibited less variation in yield than the other 
two fields (Table 3) but still had a yield range of 18 ton.ha-1.  Pivot 1 yield was 
significantly higher than the other two fields but there was no significant difference in the 
yield between Post Office and Bidgeribbin.  The CV of yield was highest in Post Office.  
The range of CVs observed in this study is similar to values obtained in other grain crops 
where Precision Agriculture has been applied (Pringle et al., 2003).  This indicates that 
the magnitude of variation in sweet corn yield is sufficient for site-specific management.   
 
Plant density was measured at harvest as well as mid season.  Bidgeribbin again exhibited 
the lowest plant density at harvest and was below the target population density.  It was 
significantly different (P<0.05) to the Pivot 1 plant density but not to the plant density in 
Post Office.  This contrasts with the midseason results and is a due to an increased plant 
density estimation in Bidgeribbin and decreased estimation in Post Office at harvest.  For 
each individual field the plant densities recorded at harvest were not significantly 
different (P<0.05) to the plant density densities recorded midseason (analysis not shown).  
While the mean plant density in each field was not significantly different there was a 
marked decrease in the variation in plant density (CV) between midseason and harvest.  
The CV of plant density at harvest was approximately half that observed midseason.  
This indicates that the crop is capable of compensation and produces a more uniform 
plant density towards the end of the growing season (NB.  This does not necessarily 
equate to more uniform production).  The pattern midseason of Pivot 1 having the lowest 
variation in plant density was repeated at harvest. 
 
The (lost) yield from immature 2º cobs was significantly higher in Bidgeribbin and Post 
Office.  Very few 2º cobs were of sufficient size to be processed thus 2º cobs can be 
considered wasted energy by the plant.  The ratio of 1º to 2º cobs was calculated and 
found to be significantly higher in Post Office.  Bidgeribbin and Pivot 1 exhibited a 
similar response to this ratio.  There was a weak negative relationship in Pivot 1 and Post 
Office (r = -0.38 and r = -0.50) between plant density and the ratio of 1º to 2º cobs, 
however this was not observed in Bidgeribbin (r = -0.13). 
 
(Histograms of distributions of yield parameters in each field are given in Appendix B.)  
 

Variance of Harvest Quality measurements 
Bidgeribbin and Pivot 1 had similar CVs for cob dimensions (diameter and length) (Table 
4).  The variation in cob dimensions in Post Office was greater (~ twice the CV of the 
other fields) and mean dimensions were lowest.  The range in quality attributes was large.  
Within field ranges were 12 – 21 mm for cob diameter and 50 – 75 mm for cob length 
with Post Office exhibiting the largest range for both properties.   
 



 

 

Variation in the quality parameters that determine the harvest date (in this case grain 
moisture) tend to be less variable as harvest logistics aim to minimise this variation.  The 
CV of grain moisture was lower in Pivot 1, however, whether this is a result of the 
alternative grain moisture measurement technique, the more uniform crop production in 
Pivot 1 or an external factor is unclear.  For grain moisture the mean and CV between 
Post Office and Bidgeribbin was similar.  Ranges in grain moisture of 5 – 10% were 
observed in all fields, with Bidgeribbin exhibiting the largest range. 
 
(Histograms of distributions of quality parameters in each field are given in Appendix B.)  

Spatial Data Analysis 

Table 5 presents the variogram parameters for the harvest measurements.  Variograms are 
displayed in Appendix E. 
 
Table 5: Variogram parameters and calculated spatial indices of harvest yield and quality 
parameters for the 3 target field combined.  (N = 113 with the exception of grain moisture N = 73) 
Harvest 
Parameter 

C0 C1 a (m) Adjusted a 
(m)*

Model type Cambard-
ella Index 

MCD

Yield 1º 
(ton.ha-1) 

2.15 19.37 76.61 229.83 exponential 9.97 25.86

Yield 2º 
(ton.ha-1) 

0.52 1.47 197.70 197.70 spherical 25.96 54.89

Ratio 1º:2º 
cobs 

0.01 0.03 236.10 236.10 spherical 25.03 66.38

Plant Density 
(‘000s ha-1) 

57.64 74.88 380.30 380.30 spherical 43.50 80.58

Cob Diameter 
(mm) 

3.49 4.26 26.08 78.24 exponential 45.03 5.38

Cob length 
(mm) 

51.21 121.40 32.24 96.72 exponential 29.67 8.50

Grain 
Moisture %† 

4.587 2.157 336.4 336.4 spherical 68.02 40.35

* The range needs to be adjusted for the different model types.  The range in a spherical model is approximately 3 times that of an 
exponential model.  Range has been standardised to the equivalent spherical range 
† Only 73 samples from Bidgeribbin and Post Office were available for this analysis. The grain moisture samples from Pivot 1 were 
analysed using a different protocol and considered incompatible for this analysis 
 
The yield (primary (1º) cobs, secondary (2º) cobs and ratio) parameters show a strong 
spatial pattern (low Cambardella index and high MCD).  The plant density exhibits a 
moderate Cambardella Index value with a high MCD values which also indicates that it 
has a strong spatial pattern.  The cob dimension quality parameters exhibit less spatial 
structure with lower ranges (distance over which the data are auto-correlated) which are 
reflected in low MCD values.  Grain moisture exhibits an intermediate Cambardella and 
MCD value. 
 
Crop parameters with strong spatial patterns are more conducive to variable rate 
management as they tend to give larger, more coherent management classes.  The table 
above indicates that site-specific management of yield (and drivers of yield) using 



 

 

variable rate technologies will be easier (from a technological aspect) than managing 
quality traits.  However, the table does not give any indication of the ease with which 
these drivers of yield can be identified or remedied.  If a valid agronomic solution to 
management the variation is not possible then having a good spatial structure, which 
allows ease of implementation, is redundant. 
 
The grain moisture exhibits some potential for spatial structure however it does have 
limited samples (N = 73).  A strong spatial structure in grain moisture would be 
beneficial to assist in differential harvesting strategies. 
 

Variation explained by Management Class models 

The amount of variation in the midseason and harvest crop counts that could be explained 
by the 6 different management class models was assessed by ANOVA.  In this analysis 
the management classes are considered as treatment effects.  A tabulated list of adjusted 
r2 values for each management class model and each crop measurement from the 
ANOVA is given in Appendix F.  These results were used to construct the mean rank by 
standard deviation of rank plot (Figure 1).  In Figure 1 it is clear that the management 
classes derived from the crop sensor data (Crop2 and Crop3) are the best models for 
explaining variation in the midseason and harvest measurements(low mean rank and low 
standard deviation).  Bidgeribbin and Post Office management classes were the most 
reliable (lowest mean rank and lowest standard deviation).  Pivot 1 crop-based classes 
were less reliable (higher mean standard deviation of rank) which may be expected in a 
more uniform crop.  The management classes derived only from the soil data did not 
perform well (high mean rank) and were more variable in response (high mean standard 
deviation).   
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Figure 1:  Plot of Mean Rank against Standard Deviation of Rank after ranking the response of the 6 
management classes derived from the sensor data in explaining variation in the manually sampled 
crop data 
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Figure 2:  Management Class maps for the 3 fields where harvest samples were taken.  The Crop2 
and Crop3 model maps are shown.  Management class maps for other models are shown in Appendix 
G. 
 



 

 

Figure 2 presents the Crop2 and Crop3 management class maps for the three fields.  As 
well as considering the amount of variation explained, management class maps need to be 
coherent enough to permit variable rate machinery to adjust to crop response.  Rapid 
changes in rates is feasible in the current system as operations (sowing, fertiliser) are 
done on narrow (6 row or 4.5 m swaths).  Even with this narrow implement width it is 
likely that all the Crop3 maps, particularly for Pivot 1, would need to be simplified 
(Figure 2).  The Crop2 maps for Bidgeribbin and Post Office show very strong patterns 
which would be easy to manage.  The management class maps for the other models 
(Soil2, Soil3, All2 and All3) are shown in Appendix G.  The smooth nature of the soil 
maps (data), compared with the crop canopy data, produce more coherent management 
classes.  However, as shown above and in Appendix G, these models do not explain the 
observed variation in the manually collected crop data. 
 

Variation in midseason biomass measurements between management classes 
Across all three fields there was a trend with the highest midseason NDVI classes having 
the highest plant density and the tallest plant heights, i.e. plant establishment was better 
and plant growth rates higher in management class 1 (higher NDVI).  Only in the Pivot 1 
field was the difference in mean plant density and mean plant height not significantly 
different, however the trend was present.  Tillering percentages were not significantly 
different between the Crop2 classes in any field however the trend of more tillers in 
management class 1 was constant.  This link between more fertile soil and moisture 
availability and increased tillering percentage has been know for a long time (Dungan et 
al., 1958).  Better plant establishment and growth tends to initiate more tillers however 
once canopy closure is reached tillers tend to dieback. 

Variation in Plant Tissue N % between Management Classes 
Table 7 shows the mean response in plant tissue N between the Crop2 management 
classes in the three target fields.  Within each field there was no statistical difference in 
plant tissue N % between the Crop2 Management Classes.  Again, the mean plant tissue 
N in the management classes was high given accepted limits and N is not limiting in any 
of the management classes.  Whilst there was no statistical difference between the 
management classes (possibly in part to insufficient sample size), in all three fields there 
was a trend of management class 1 (higher NDVI) having a higher mean plant tissue N 
response.  This was also observed in the Crop3 model (data not shown).  The reason for 
this is unclear and may be due to the more advanced physiological stage of growth. 
 
 



 

 

Table 6:  Mean response in midseason plant density, plant height and tiller % for the management classes from the Crop2 and Crop3 models for each of 
the three fields 
Field Man. Class 

Model 
Man. 
Class ID 

Number 
of samples

Area 
(ha)

Mean NDVI 
(Aerial image 

January) 

Mean Plant 
Density 

(‘000s.ha-1)

Mean Plant 
Height (cm)

Tiller %

Bidgeribbin Crop2 1 12 17.77 0.59a 67.59a 66.41a 35.36a

  2 10 8.54 0.45b 43.11b 42.52b 32.95a

     
 Crop3 1 10 16.76 0.60a 69.33a 68.09a 37.12a

  2 9 6.12 0.52a 55.06b 53.77b 32.84a

  3 3 3.43 0.28b 17.78c 19.11c 29.00a

     
Pivot 1 Crop2 1 12 7.30 0.61a 82.59a 50.76a 36.90a

  2 8 6.52 0.54b 75.56a 40.95a 30.86a

    .  
 Crop3 1 6 2.93 0.61a 82.22a 51.25a 33.62ab

  2 7 7.17 0.61a 80.95a 48.81a 40.53a

  3 7 3.72 0.53a 76.51a 41.08a 29.19b

     
Post Office Crop2 1 10 6.08 0.60a 96.00a 49.36a 39.67a

  2 5 1.77 0.41b 64.44b 31.22b 28.64a

    .  
 Crop3 1 5 1.89 0.64a 103.56a 55.89a 39.20ab

  2 6 4.58 0.57a 86.67ab 43.72ab 41.42a

  3 4 1.38 0.36b 61.11b 27.00b 23.85b 

Different letters indicate significant differences (Tukey All Pairs test) within a field and a particular Management Class Models. 
 
 



 

 

 
Table 7: Mean Leaf N % for the management classes from the Crop2 model for each field. 
Field Man. Class ID Number of 

Samples 
Plant Tissue N 
% 

Bidgeribbin 1 8 3.65a 
 2 11 3.48a 
    
Pivot 1 1 9 3.59a 
 2 6 3.50a 
    
Post Office 1 7 3.60a 
 2 5 3.24a 
Different letters indicate significant differences (Tukey All Pairs test) within a field for the Crop2 model. 
 

Variation in Harvest parameters between Management Classes 
In Bidgeribbin, the Crop2 management classes showed a big difference in yield (5.87 
ton.ha-1).  The greater yield in Class 1 came from both a statistically larger (P<0.05) plant 
density and cob size (diameter).  The mean class yields in the Crop3 model showed the 
prevailing trend of a lower mean NDVI midseason producing lower plant densities, 
smaller cob size and lower mean yields at harvest, however, the difference in yield and 
quality measurements at harvest between Class 2 and Class 3 was not significantly 
different.  The grain moisture data indicates that the high yielding zones in Bidgeribbin 
are less mature (higher grain moisture %) than the low yielding zones.   
 
In Pivot 1 there was no significant difference in yield or plant density between the 
management classes for both the Crop2 and Crop3 models.  This again reflects the 
uniform nature of production in this field.  For both models, the management class with 
the lowest midseason mean NDVI did produce the lowest yield reflecting a decrease in 
cob size.  There was a significant difference in grain moisture between the management 
classes although the difference was not large (1.15 %).  However this was the only 
significant difference in grain moisture observed with the Crop2 and Crop3 management 
classes in the three fields. (NB.  MC 2 and 3 in All3 are sig different as well)  
 
The Post Office field exhibited the biggest yield difference in the Crop2 models (9.23 
ton.ha-1).  Whilst yield was significantly different between management classes the grain 
moisture was not and the difference in the mean grain moisture between the Crop2 classes 
(2.08%) is elevated by one outlier (89% moisture).  If this outlier is removed the 
difference between the means of the two classes is 0.01%.  The low NDVI areas (Class 2) 
were slower to establish (with lower mean height – data not shown), however have 
reached the same level of maturity as the remainder of the field.  This accelerated 
maturity comes at a cost of lower yield from fewer and smaller cobs. 
 
 



 

 

 
 
Table 8: Mean response in yield, plant density, cob diameter and grain moisture for the management classes from the Crop2 and Crop3 models for each 
of the three fields 
Field Man. Class 

Model 
 

Man. 
Class ID 

Number 
of samples

Area 
(ha)

Mean NDVI 
(Cropcircle 

January)

Mean 
Yield 

(ton/ha)

Mean Plant 
Density 

(‘000s.ha-1)

Mean Cob 
Diameter 

(mm)

Mean Grain 
Moisture 

(%)
Bidgeribbin Crop2 1 31 (30) 17.77 0.60a 21.96a 69.17a 55.39a 76.03a

  2 30 (30) 8.54 0.43b 16.09b 60.07b 52.19b 74.87a

    
 Crop3 1 27 (26) 16.76 0.61a 22.32a 69.62a 55.68a 75.87a

  2 25 (25) 6.12 0.47b 17.12b 61.42b 52.80b 75.36a

  3 9 (9) 3.43 0.37c 14.77b 59.01b 51.03b 74.51a

    
Pivot 1 Crop2 1 16 (15) 7.30 0.57a 24.19a 82.22a 53.75a 72.56a

  2 10 (10) 6.52 0.45b 21.28a 85.11a 51.32b 73.71b

    .
 Crop3 1 8 (7) 2.93 0.59a 23.84a 82.77a 53.08a 72.69a

  2 10 (10) 7.17 0.54b 23.25a 82.44a 54.06ab 72.83a

  3 8 (8) 3.72 0.44c 21.95a 85.00a 50.99b 73.55a

    
Post Office Crop2 1 23 (18) 6.08 0.53a 19.93a 76.13a 50.78a 75.26a

  2 7 (7) 1.77 0.41b 10.70b 62.22b 43.03b 77.34a

    .
 Crop3 1 9 (9) 1.89 0.56a 20.99a 74.32a 51.84a 75.53a

  2 15 (10) 4.58 0.50b 19.01a 76.88a 49.98a 74.87a

  3 6 (6) 1.38 0.40c 9.88b 60.74b 42.14b 77.94a

    
Different letters indicate significant differences (Tukey All Pairs test) within a field and a particular Management Class Models. 
 
 



 

 

 

Part II – Investigation of management options 

Midseason Prediction of Yield 

Table 9 shows the results of yield predictions based on mid season NDVI data and a 
knowledge of plant density.  Predictions with both sets of NDVI data (CropCircle and 
aerial imagery) produced reasonable fits to the individual fields (r2 0.40 - 0.75).  
Bidgeribbin provided the best model fits and Pivot 1 the worst.  The poor fits in Pivot 1 
are probably due to the lower variability in response making prediction harder.  The 
global yield prediction model – using the data from all three fields – explained about two-
thirds of the variation in the yield response.  Standardising the data to a relative yield 
value within each field and then running the global model produced did not improve the 
predictions.  There is a lot of potential noise in both the manual crop measurements and 
sensor data which are propagated through the models.  When this is taken into account 
these model fits are very encouraging.   
 
Table 9:  Adj r2 and RMSE of absolute yield prediction from NDVI and plant density (at harvest) 
data (using sample data) and relative yield for combined data set 
Field Number 

of 
Samples 

Model Aℓ Model B◊ 

  Adj. r2 RMSE Adj. r2 RMSE
Bidgeribbin (ton.ha-1) 61 0.75 2.30 0.75 2.27
Pivot1 (ton.ha-1) 25 0.50 2.75 0.40 3.00
PO (ton.ha-1) 30 0.61 3.76 0.68 3.27
All (ton.ha-1) 116 0.66 3.10 0.64 3.16
All (Relative Yield %) 116 0.57 15.83 0.53 16.59
ℓ Model inputs are Cropcircle NDVI (January) and plant density 
◊Model inputs are Aerial image NDVI and plant density 
 
Yield predictions based only on the NDVI were also performed (data not shown) and 
these produced much poorer fits (r2 0.05 – 0.53 for the individual field fits).  Knowledge 
of plant density appears beneficial to accurate yield prediction.  Plant density is correlated 
with the NDVI data in Bidgeribbin and Post Office (r = 0.4 – 0.6) but not in the more 
uniform Pivot 1 field.  With multi- or hyper-spectral sensors it may be possible to use a 
combination of other vegetative indices to estimate plant density quasi-independently of 
NDVI.  This is certainly an area that warrants further investigation and for the multi-
spectral aerial image can be done with the current data set.  
 
As an aside, the NDVI values were also standardised to a relative NDVI values within 
each field by substituting NDVI for yield in Equation 1.  This was done to examine the 
effect of (small) differences in sowing dates and crop development between the fields.  
NDVI is influenced by both the number of plants and the size of the plants, therefore 
crops at the same density and chlorophyll content at a more advanced stage will produce 
higher NDVI values.  The CropCircle sensor also took several days to collect data which 



 

 

may further increase the error due to crop size on the NDVI measurements.  The 
substitution of a relative NDVI for the actual NDVI in the combined data model (all three 
fields) did not improve the model fit.  For fields sown over short (1 week) time frames 
standardising NDVI does not appear to be beneficial for modelling.  This is supported by 
the lack of significant difference in mean plant height between the fields (Table 1). 
 

Modelling yield, quality and plant density. 

The plots of the global model fits and the regression equations for both the yield and 
quality models are shown in Figure 3 and Equations 2 and 3.  The fits for individual 
fields are shown in Appendix H.  The global models have a very good (r2 0.90 and 0.78)..  
The stability of this relationship needs to be tested over time and across more fields.  
However, these preliminary results indicate that quality is related to the yield – plant 
density interaction and by manipulating yield it may be possible to optimise quality.   
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Figure 3: Regression model fits of actual vs. predicted Yield (ton.ha-1) (left) and Cob length (mm) 
(right).  Colours indicate fields; Red – Bidgeribbin, Green – Post Office and Blue – Pivot 1. 
 
Yield (ton/ha) = -39.99 + 0.30*Plant Density +0.20*Cob Length + 0.016*Moisture % 

Equation 2 
 
Cob Length (mm) = 191.93 + -1.13*Plant Density + -0.056*Moisture %p + 3.83*Yield 

Equation 3 
 

Some (simple) economic analysis of N fertiliser. 

Nitrogen was uniformly applied and totalled ~151 kgN.ha-1 across the growing season 
(23 kgN.ha-1 pre sowing, 36 kgN.ha-1 at sowing and 92 kg.ha-1 sidedressed).  The cost of 
this, assuming it is all applied as urea (46% N), at a cost of $900 ton, is (0.151/0.46) * 
900 = $295 ha-1.   
 



 

 

The results of the N analysis of leaf tissue collected at silking indicate that most plants 
across all fields had excess N levels (> 3.25 %) in the plant tissue.  Only one site, 
associated with a waterlogged area in Post Office, had a plant tissue N level that was low 
(2.6 %) but not limiting to production.  This indicates that N is being over applied in the 
system.  Further anecdotal evidence of excess N is provided by the aerial imagery of Post 
Office.  At sowing there was a differential application of N across the six rows of the 
planter due to problems with fertiliser distribution in the planter.  This produced variable 
plant growth early in the season across rows.  This would expect to be seen as striping in 
the high resolution aerial imagery if the crop was truly short of N during emergence.  
However no striping is discernible in the aerial imagery in Post Office. 
 
Measured yields across the paddocks ranged from 6 – 26 ton.ha-1.  On average, a 17 ton 
crop in the Central-West of NSW requires 220 kg of N (Wright et al, 2005).  Assuming a 
linear function, this equates to 13 kg N per ton of sweet corn produced.  The uniform 
application of N on the fields was ~ 155 kgN.ha-1, therefore any site that yielded under 12 
ton.ha-1 had excess N applied even before the pre-sowing soil available N is accounted 
for.  There were 15 (of 123) sites where this occurred. 
 
The value of 220 kgN.ha-1 is an average for the district.  The plant tissue N results 
indicated that even in the high yielding areas of the three fields N is non-limiting at 
silking.  From this it can be assumed that there is sufficient N in the system to produce a 
crop of ~ 26 ton (26.5 ton being the highest recorded yield level in the lowest yielding 
field, Post Office).  The yield means (from Simplot (Evan Brown pers. comm.)) for the 
three fields were 16.4 ton (Post Office), 19.8 tons (Bidgeribbin) and 21.2 ton (Pivot 1).  
Therefore, on average, there is sufficient N to produce a further 9.6, 6.2 and 4.8 tons of 
corn in the respective fields.  This equates to a N excess of 125, 81 and 62 kgN.ha-1 for 
the three fields (or 270, 175 and 135 kgUrea.ha-1) which equates to an additional 
unnecessary cost of production of $243, $158 and $122 ha-1 for Post Office, Bidgeribbin 
and Pivot 1 respectively.  NB. This cannot be considered as total wastage as some of the 
N will be stored in the soil for future crops, but this is an upfront extra ‘capital’ input 
which will depreciate i.e. N will leach out of the root zone.  It also has some 
environmental implications and possibly costs. 
 

Discussion 

Is there sufficient variation to warrant site-specific or management 
class-specific management? 

The yield coefficient of variation for the three fields is similar to that observed in other 
grain crops where PA has been successfully implemented.  The mean yield is generally 
higher than other (dryland) grain crops where PA has been implemented however the 
large range of yield values within fields (14 – 20 ton.ha-1) indicates that there is plenty of 
potential to adjust management away from uniform applications. 
 



 

 

The analysis presented in this report has focused on total yield.  During data collection at 
harvest, the dimensions of each primary cob at each sample location were measured.  
This will allow for a more rigorous analysis of actual vs. marketable yield at each sample 
site by culling any undersized cobs.  From both the producer and processor perspective it 
is the marketable yield which is of greatest importance.  Unfortunately, individual cob 
mass was not recorded at harvest due to time constraints.  However the % of marketable 
cobs can be calculated and an estimation of yield based on a relationship between 
diameter, length and mass can be made.  (This analysis forms part of the honours work 
that will be completed in November 2008.)  The expectation with this analysis is that 
high yielding areas will have low rejection rates while poor yielding areas will have high 
rejection rates.  The result of this will be an increase in yield variation.   
 
Mean quality parameters at each site also exhibited large ranges and opportunities to 
manage differentially.  Apart from insect damage, Simplot Australia Ltd does not have 
stringent guidelines for cob dimensions.  Sweet corn destined for the fresh market has 
more emphasis on cob size.  In general, average cob dimensions were less than the 
preferred dimensions by Simplot Australia Ltd (cob length 195-205 mm, cob diameter 
53-55 mm) for all three fields.  Further analysis of the implications of observed variation 
in quality for a fresh food market will be provided in the addendum.  There was no spatial 
pattern associated with insect pressure and this was poorly explained by all management 
class models. 
 
The large variation observed in both yield and quality parameters indicate that a uniform 
management system is sub-optimal in this production system.  One of the prerequisites 
for successfully implementing precision agriculture is the presence of a sufficient 
magnitude of variation.  In this production system this appears to be true.  These results 
indicate opportunity for PA in sweet corn but other growers will need to verify the 
magnitude of variation in their production system independently.  The large variation in 
the canopy sensed data (both aerial and proximal) that mirrors the variation in production 
may provide a tool to gauge within-field variation in other systems.  However, this data 
will need some ground-truthing to verify the local response.   
 
The three fields exhibited different levels of variation in yield and quality with Pivot 1 
being more uniform.  It is more likely that investment in PA and VRT in Post Office and 
Bidgeribbin would have a higher return on investment as there is more variation to 
manage.  
 

Management Classes and variable-rate management 

One of the objectives of this project was to evaluate the usefulness of management 
classes as a tool for differential management.  Whilst it is usually best to have some end-
of-season production data, such as yield maps or quality maps, experiences in Australia 
and overseas have shown the value on high resolution soil maps derived from on-the-go 
soil sensors.  The sensors used in this study measure the apparent electrical conductivity 
of the soil (ECa).  This soil property is an indication of the amount of clay (higher clay % 
= higher ECa), soil moisture (more moisture = better conduction = higher ECa), salinity 



 

 

when present (more charge in the soil solution = higher ECa) and clay mineralogy (more 
surface charge = higher ECa) in the soil.  There are also other soil properties that have a 
smaller effect on ECa (organic matter, soil temperature, soil pH) and are not considered 
here.   
 
Deriving management zones from only soil sensor is not optimal but is often required 
when existing high resolution production data, particularly yield maps, are not available, 
as is the case in this study.  The output from ECa sensors can be used to identify where 
soil moisture is or is likely to be held (i.e. where the clay is).  In dryland situations, the 
ability to store soil moisture often drives productivity thus the ECa data has been very 
useful in understanding maize yield response and deriving management classes.  
Elevation data can also provide information on where water is expected to be in the 
landscape and previous studies (Kravchenko and Bullock (2000) and Kaspar et al. 
(2003)) have shown that much of the variation in dryland maize yield can be explained 
by elevation and slope effects. 
 
In this study, the management classes derived only from soil sensor and elevation 
information (Soil2 and Soil3) did not appear useful for differential crop management.  In 
Bidgeribbin and Pivot 1 both Soil2 and Soil3 models explained very little of the variation 
observed in yield and quality.  In Post Office the Soil2 model was ineffective but the Soil3 
model did explain some of the variation in yield and quality.  However the Soil3 model 
was only superior to the other models in explaining the variation in cob diameter and 
length and performed poorly on the other harvest parameters.   
 
In contrast the Crop2 and Crop3 management classes based only on the NDVI data 
(CropCircle and aerial imagery) explained 10 – 25% of the variation in yield with the 
worst response in Bidgeribbin (Appendix F).  In actual values this translated to a 5.9 
ton.ha-1 difference in Bidgeribbin and a 9.2 ton.ha-1 difference in Post Office between the 
Crop2 classes (Table 8).  These differences are large enough to warrant class-specific 
management at least.  Even though crop response was more uniform in Pivot 1 and there 
was no significant difference in yield between the classes, the Crop2 and Crop3 models 
were able to discriminate significant differences in quality.  However this is not 
significant from a premium/discount perspective for processed sweet corn.  The Crop2 
and Crop3 models did not explain differences in harvest quality in Bidgeribbin or Post 
Office (Appendix 6 and Table 8). 
 
The Crop2/Crop3 models were also successful in identifying differences in growth 
midseason (Table 6 and Appendix F) in Bidgeribbin and Post Office.  There were 
significant differences in plant density and height between classes which will have 
implications for potential yield goals and within-season management.  If different classes 
have different mean densities and development stages then midseason management 
should be altered to accommodate the current and future needs of the plant given its 
growth/yield potential.  Pivot 1 did not show significant differences to the Crop2/Crop3 
models midseason (and did not show significant yield differences at harvest). 
 



 

 

When the soil and crop data were joined (All2 and All3) there was no benefit gained in 
explaining the variation in crop production.  Some attributes performed better with the 
All2/All3 models but the trend was not consistent and these models performed worst than 
the Crop2/Crop3 models on average (Figure 1). 
 
In these three fields crop production and variation in crop production is best gauged from 
a direct measurement of the plant (canopy) midseason.  The ability to irrigate has 
eliminated much of the variation in crop production that can be directly attributed to 
variation in soil moisture holding capacity.  In fact, with the wet summer in 2007/08, it is 
a problem with waterlogging, which is not as easily mapped with soil sensors, that drives 
much of the variation, particularly in Post Office.  Soil fertility also seems to be sufficient 
(as measured by plant tissue N %) to not introduce any variation in production.  
 
The good results associated with the midseason canopy data indicate that an on-the-go 
system to variably apply mid-season inputs (fertiliser or irrigation) will be applicable and 
perhaps more relevant in these production systems than pre-defined soil-based 
management classes.  The preference for canopy sensor-based decision making does not 
totally exclude management classes or soil information.  Management classes based on 
yield information, rather than just soil information, may yet prove to be useful.  This 
approach is stifled in the interim until reliable harvest sensors are available.  Once a 
calibration between crop production and mid-season canopy response is developed then 
additional information either on management classes or site-specific soil properties may 
be useful to further refine and improve the decision support system. 
 
There appeared little difference in information value between the aerial image and the 
CropCircle data.  Both have advantages and disadvantages.  Aerial imagery is less 
flexible with timing and relies on an external contractor, whilst the CropCircle can be run 
at anytime that suits the grower and run multiple times during early growth.  However 
aerial imagery requires little post-processing to create images while the CropCircle data 
needs interpolation to produce maps. The turn around time for both is similar however 
the interpolation requires more skills and support.  CropCircle is a larger capital cost up-
front with little on-going cost whilst imagery incurs a cost every year for collection.  
Growers need to investigate which approach best suits their production and local 
agronomic support base. 
 

Crop modelling for sweet corn 

Crop modelling is an important tool for crop management and even more so for site-
specific crop management.  Crop models form the basis for many decision support 
systems.  As indicated above, the canopy sensor data provided the best discriminator of 
variation in midseason and harvest production.  The fits of the yield regression models 
(Table 9) derived from the midseason canopy sensor data and harvest plant density data 
support this.  Being able to reliably predict yield (or at least yield potential) midseason 
provides valuable information for any decision support system associated with midseason 
crop management. 
 



 

 

The technology to perform on-the-go VRT of fertiliser or irrigation already exists.  These 
VRT systems can be driven by either real-time information, from a tractor mounted 
canopy sensor fed directly into a decision support system, or from a prescription map 
derived from previously collected data from proximal or remote (multi-spectral 
aerial/satellite imagery) sensors.  Whether real-time or prescription-based, these systems 
are only as good as the decision support system (DSS) that runs them.   
 
Sweet corn crop models are poorly developed compared to other cereals, however much 
of the knowledge within existing cereal crop models appears to be transferable.  This has 
recently been illustrated by Lizaso et al., (2007) who have adapted the CERES crop 
model for sweet corn.  The different production environment in Australia does not make 
these results directly transferable to Australia however it does open the possibility for 
adaptation of existing Australian models (e.g. APSIM) for sweet corn with a minimal 
time and cost expense.   The data from this small study shows that effective field and 
global models can be generated from plant density and canopy response data.  There is an 
opportunity to expand on this to develop meta-models, using complex crop models (like 
APSIM) and site-specific crop/soil data, to drive DSSs.  These meta-models have the 
ability to make the output from complex models accessible to on-farm situations.  This 
has already been done at a field-scale in the grains industry with Yield Prophet®.  The 
development of a fertiliser or irrigation decision support system based on canopy and 
biomass sensors is certainly an area for the industry to pursue if they wish to continue in 
down the PA path.  Without this support, variable-rate decision making is difficult.  A 
similar caution to the North American sweet corn industry has been recently expressed by 
separate work in the U.S.A. (Ma et al., 2007). 
 
The first modelling exercise in Part II looked purely at the ability of midseason 
knowledge to predict yield with the intention of adjusting inputs to optimise yield.  The 
second approach was to model how yield and quality interacted.  These regression 
models are only a preliminary step but illustrate how plant density, quality and yield 
interact.  Quality parameters need to reach minimum threshold values for the sweet corn 
to be marketable.  Equation 2 can be used to estimate a desirable yield goal for given 
quality attributes.  Alternatively, if potential yield is known, as a result of midseason 
measurements and crop models, then the final quality (dimensions) of the sweet corn can 
be predicted.  Models such as these permit economic analysis and risk management 
planning for growers.  This is becoming increasingly important as the cost of inputs rises.   
 
As indicated in the results section the robustness of these models are yet to be tested by 
bootstrap/jack-knife methods or application into independent production system.  The 
data within this project can be cross-validated internally but any future work needs to 
ensure that models are robust enough for different agronomic regions or alternatively 
develop region-specific models.  The temporal (seasonal) stability of the models also 
needs to be evaluated.  If these models are only field-, farm- or season -specific then their 
applicability is limited and growers will need to focus on on-farm experiments to develop 
their own models for DSS. 
 



 

 

Missing links (technological and methodological) to implement precision 
agriculture in sweet corn. 

For site-specific crop management to be effective growers must be able to quantify the 
response within the production system.  Without quantifying yield and/or quality it is 
difficult to put dollar figures on the cost/benefits of variable rate management.  Without 
this dollar figure most farmers are reticent to invest in new technologies.  The sweet corn 
industry is harvested by only a few combine harvesters.  The priority is to get some form 
of yield sensor onto these machines.  Measuring quality is more difficult but it may be 
possible to do using digital image analysis to measure cob length and cob diameter.  In 
both cases the preferred option would be to adapt and calibrate existing, reliable sensors 
rather than build new systems.  The cost of this should be relatively small for each 
partner if shared between the growers, processor and peak industry body. (Some thoughts 
on yield and quality sensors are given in Appendix  
 
This work and that of Lizaso et al., (2007) indicate that plant density is a key driver in 
production and in modelling production.  Two priorities in this area are a) to ensure more 
even planting and germination and b) to be able to measure plant density. 
 

a) Even planting:  The sweet corn crop in NSW is contract planted.  It is know that as 
variation in plant density increases then yield decreases even though the mean density 
remains constant.  All possible efforts need to be made to ensure that the contract 
planter is running optimally.  The additional of RTK-GPS auto-steer will help 
minimise errors in row spacing between runs.  There was a large variation in plant 
densities observed in this production system however the soil ECa data from this 
study did not show strong soil effects on plant establishment.  There may be 
differences in soil types that lead to variable soil crusting or variable top soil moisture 
which may need to be differentially managed to ensure even emergence.  The soil 
core results (to be delivered in the addendum report) may shed further light on this.   
 
b) Measuring plant density.  To make crop models effective, a measurement or 
estimation of plant density appears preferable.  The mid-season NDVI identified 
significant differences between the Crop2 management classes.  However NDVI 
integrates both number of plants, size of plants and chlorophyll content of the plants 
therefore cannot be used to directly estimate plant density unless plant size is even 
(which, from the plant height data, it is not).  There are alternative vegetative indices 
that can be constructed from multi-spectral data and it may be possible to use a 
combination of indices to extract plant density from sensor data.  Little work has been 
done in this domain, particularly in sweet corn.  There has been some work in wheat 
which examined the coefficient of variation in spectral response as a measurement of 
plant density (Arnall et al, 2004).  Alternatively, a plant density sensor could be used 
based on mechanical or optical measurement.  Radar based sensors for measuring 
plant density have been reported (Paul and Speckmann, 2004) but are not in common 
use.  Cost could be an issue with these sensors if a large market is not available.  For 
either approach further work is required.  The ability to measure plant density site-



 

 

specifically or class-specifically is an important step in achieving effective variable 
rate management. 

 
As indicated elsewhere in this report the absence of effective crop models is a issue with 
successful adoption of VRT.   
 
As an irrigated crop, variable rate irrigation (VRI) is also a potentially cost saving 
technology.  VRI systems exist, particularly for pivot and linear systems.  There is 
already investment from HAL and other sources into these systems.  Again, the 
engineering aspects of VRI are well understood and commercial systems are available.  
The primary bottleneck in adoption is attaining sufficient spatial resolution in application 
and in decision-making.  Research into soil and canopy-based sensors to determine plant 
water status is underway and the sweet corn industry should keep abreast of this research 
to facilitate adaptation to sweet corn. 
 
Lastly, the data from this study and results from Lizaso et al’s (2007) modelling indicate 
a that yield and quality are linked and can be manipulated to optimise quality.  This is 
likely to be more relevant in the fresh market (compared to the processed market) but is 
any area of research that can be explored so that site-specific management can be used to 
produce a more uniform (saleable) crop quality. 
 

Other issues… 

If not soil, then what is driving variation? 
The sensor derived soil data did not provide much help in identifying what soil factors 
where influencing production.  There are certainly more issues to be explored here to 
better understand what is driving production.  Is there an N excess effect in the crop?  
What is driving variable plant establishment apart from known crusting and waterlogging 
effects?  Is there variation that is attributable to management variation instead of 
environmental variation?  These issues need to be discussed by the grower and local 
agronomist – such discussions are key to any successful PA program. 
 
There were certainly some interesting agronomic observations from the management 
class data.  The high yielding Class 1 in Bidgeribbin actually returned a higher mean 
grain moisture % than Class 2.  This was in contrast to the other two fields.  This 
indicates that the higher yielding area in Bidgeribbin was less mature than the lower 
yielding area.  Class 2, on the sandier slopes, was slower to establish but achieved 
maturity (at a lower yield potential) than Class 1.  If the aim is uniform maturity (and 
quality), what implications does the faster growth rate in Class 2 have for sowing dates 
and/or sowing rates? Or implications for fertiliser strategies between classes?  In Pivot 1, 
plant establishment was much more uniform between classes.  The difference in NDVI 
mid-season indicated a difference in quality, not yield potential.  In this case a DSS is 
need to assist with quality (not yield) management during side-dressing. 
 



 

 

How much N is enough? 
The nitrogen analysis presented is a very simple approach to N economics with a few 
simple assumptions.  However it illustrates that significant savings per hectare can be 
achieved, particularly at side-dressing.  The relative yield prediction model could be used 
to assign rates based on the NDVI response at side-dressing, for example a decision in 
Post Office of not applying N on the low NDVI class (Class 2 with yield of 10.7 tonnes) 
would have saved 1.7 ha by 200 kg urea @ $900 ton-1 = $306 (or $180 ha-1).  However 
for robust decision support systems more work needs to be done in the area of crop 
response and crop modelling. 
 
Other recent studies have reported that nitrogen application in sweet corn is excessive.  
Shenker et al (2003) found that applying only 45% of the recommended N produced no 
significant yield loss.  Over a three year study Ma et al. (2007) found no significant 
increase in yield from increasing N rates above 100 kg.ha-1 and for two years no benefit 
from increases above 50 kg.ha-1.  It is possible that these short term studies may be 
influenced by residual N stores in the soil, however this is further evidence that over 
application of N is common in sweet corn production systems.  Since nitrogenous 
fertiliser is now a major cost, and a major potential pollutant, growers should be more 
cautious in application.   
 
Strip or variable rate in-field trials of different nitrogen rates should be adopted by 
growers to tailor N requirements for their production systems.  Protocols for on-farm 
experimentation are now being widely published (e.g. Whelan et al., 2005) and can easily 
be adapted to sweet corn production. 
 

Technology transfer 
The main technology transfer is through the WebGIS portal where all the data is 
displayed.  Two Milestone reports have been generated which are again available through 
the WebGIS page 
 
The WebGIS can be accessed at   http://rural-gis.usyd.edu.au/VG07035 
 
The soil sensors were displayed at a local field day in collaboration with DPI NSW. 
 
There have been no formal publications from the project yet – mainly due to its short 
timeline (9 months).  The large data set derived from the project should facilitate at least 
1 journal and 1 conference paper.  The current intention is to publish the results of the 
variation and the management class analysis in a journal.  The results from the crop 
modelling will be prepared as a conference paper.  Another paper (journal or conference) 
should arise from the senior research project which focuses on quality and soil 
interactions. 
 
The preparation of magazine article for the AUSVEG industry magazine will commence 
at the submission of this report.   
 



 

 

The chief investigator did intend to present the results to Simplot and growers at the post-
harvest meeting, however a change of date precluded this.  The information is now being 
directed through Simplot’s Field Services Manager, Mr Evan Brown. 
 

Recommendations - scientific and industry 
The application of precision agriculture technologies to sweet corn is in its infancy.  
However, the physical similarities between sweet corn and maize production systems 
means that much of the technology required to implement PA in sweet corn systems 
already exists and can be adapted.  The challenges in technological adoption lie in areas 
where the production system differ, principally in harvesting where maize harvests grain 
(kernels) whilst sweet corn harvests whole cobs.  Industry needs to invest in the 
adaptation or development of harvest sensors for both yield and quality.  Without this 
information implementation of PA will be stilted. 
 
Of the existing technology canopy sensing sensors appear to be the most useful 
technology for sweet corn producers to drive variable rate management.  In systems 
where neither moisture nor nutrient is limiting than an actual measurement of the canopy 
just prior to or during the application of within season inputs provides the best 
information on yield potential.  Spatial information on soil variation appears to be of less 
importance during the initial stages of PA adoption.  However this information may be 
come more important as a covariate in decision making particularly pre-sowing nutrient 
levels. 
 
For canopy sensors to be most effective the signal needs to be translated into a decision.  
There are several successful commercial applications available however the decision 
support systems are developed for North American/European maize systems.  For the 
decision support to work in Australia the tools need to be adapted a) for sweet corn and 
b) for Australian conditions.  This will necessitate development/refinement of crop 
models.  Immediate investment in this area is needed to ensure successful adoption of 
canopy sensors. 
 
The large range in observed yield indicate that canopy sensors could be used crudely but 
effectively using intuitive agronomic knowledge of the farm systems.  This could be done 
without either validating yield (harvest sensors) or a decision support system for VRT.  
One commercial proximal canopy sensor and an aerial image were used in this study.  An 
investigation of the advantages of other canopy sensors and study of the optimal timing 
for sensing would assist growers who are keen to begin with a simple system.   
 
Nitrogen application appears to be excessive in the sweet corn production system.  Trials 
should be undertaken to determine how fertiliser inputs can be better optimised.  This 
could be done in the traditional plot-trial method but would be better served using PA 
technologies and methodologies. 
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Appendices 

APPENDIX A:   Plant Height vs. Plant mass (Fresh and Dry) 

 
Non-destructive sampling of plant biomass midseason was performed by measuring the 
height of plants to the top node of the primary culm.  A sub-sample of 60 plants from the 
production system that covered the range of observed plant sizes were destructively 
sampled.  The whole plant was harvested (including a root ball with soil).  Plants were 
immediately transported to a lab (~4 hours after sampling) where the roots were removed.  
Individual plant heights (to the top node on the culm) and plant fresh weight were 
recorded.  Plants were then dried in a drying oven (65ºC) before being weighted for dry 
weight. 
 
A linear regression analysis was performed to determine the relationship between plant 
height and plant biomass (both fresh weight (FW) and dry weight (DW)).   
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Good linear fits were obtained for both FW and DW (r2 = 0.95 and 0.94 respectively).  
This gave us confidence to convert the plant height data into a prediction of fresh and dry 
biomass.  This was achieved using the plant count data (plant density) at each sample 
location. 
 
This sampling covers a range of plant heights (10-120 cm) and was performed just prior 
to Nitrogen side-dressing of the crop.  Measurements of plant height provide a good non-
destructive method of estimating crop biomass.   
 



 

 

 

APPENDIX B:  Distribution of manually sampled harvest data 

 
Distribution of Harvest Yield Data 
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NB: Post Office ratio has one outlier not shown (one site had 28 primary cobs and only 1 
secondary cob) 
 



 

 

Distributions of Harvest Quality Data 
 

30 34 38 42 46 50 54 58

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

53.818021
2.7732317
0.3550759
54.528279
53.107764

61

Moments

Mean Cob Diameter

120 140 160 180 200 220

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

189.72734
12.26137

1.5699076
192.86762
186.58705

61

Moments

Mean Cob Length

70 72 74 76 78 80 82 84

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

75.456536
2.5624277
0.330808

76.118481
74.794591

60

Moments

Grain Moisture (%)

Distributions Field=Bidgeribbin

30 34 38 42 46 50 54 58

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

52.818717
2.5160008
0.4934284
53.834952
51.802482

26

Moments

Mean Cob Diameter

120 140 160 180 200 220

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

181.54596
11.099328
2.1767574
186.02907
177.06284

26

Moments

Mean Cob Length

70 72 74 76 78 80 82 84

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

73.023404
1.2755386
0.2501537
73.538605
72.508203

26

Moments

Grain Moisture (%)

Distributions Field=Pivot1

30 34 38 42 46 50 54 58

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

48.975155
5.1615606
0.9423677
50.902513
47.047796

30

Moments

Mean Cob Diameter

120 140 160 180 200 220

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

173.72292
19.259343
3.5162589
180.91448
166.53136

30

Moments

Mean Cob Length

70 72 74 76 78 80 82 84

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

75.849089
3.3797967
0.6759593

77.2442
74.453977

25

Moments

Grain Moisture (%)

Distributions Field=PO

 
 
 
 



 

 

 APPENDIX C:  Introduction to Variogram Analysis 

 
For spatial data sets , where each data has a know location (x,y coordinate) then the 
theoretical spherical variograms can be calculated using the global variogram function in 
Vesper® (Minasny et al., 2005) and the variogram parameters (nugget variance (c0), sill 
(c0 + c1) and the range (a)) that define the variogram can be recorded..   
 
The c0 value estimates the amount of variance at a lag distance of 0 m and is a function of 
stochastic effects and measurement error.  The c1 value estimates the amount of auto-
correlated variance in these data and contributes with c0 to define the sill (c0 + c1) or the 
total amount of variance in these data.  The range defines the distance over which data 
are auto-correlated i.e. the distance at which the sill is reached. 
 
The parameters from the variogram analysis can be used to calculate the Cambardella 
Index (Cambardella et al., 1994) and Mean Correlation Distance (MCD) (Han et al., 
1994)  
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where  c0 = nugget, c0 + c1 = sill,  
and  <25 = Strong spatial dependency 
  25–75 = Moderate spatial dependency 
  <75 = Weak spatial dependency 

 
The Mean Correlation Distance (MCD) 
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where  c0 = nugget, c0 + c1 = sill, a = range 

 
Both the Cambardella Index and MCD provide some indication of the spatial structure in 
these data.  The Cambardella Index is a ratio between the nugget (c0) and the sill (c0 + c1) 
thus measures the amount of variance in these data that is auto-correlated and potentially 
manageable.  Although no account is taken in the index of the range parameter smaller 
values are indicative of a stronger spatial structure (Han et al., 1994).  The MCD is an 
empirical index, calculated in metres, that was originally derived for soil properties.  The 
MCD includes the range of the data, as well as the ratio between the nugget and sill, to 
provide an estimate of the distance over which these data are auto-correlated.  The greater 
the MCD the greater the spatial structure. 
 



 

 

APPENDIX D:  Maps of data 
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APPENDIX E:  Variograms of Harvest yield and quality parameters 

 
Primary Yield    Secondary Yield 

  
 
Variogram Parameters 
 C0 C1 Range Model 
Yield 1º 2.146 19.37 76.61 exponential
Yield 2º 0.5167 1.474 197.7 spherical 
 
 
Plant Density     Ratio primary:secondary cobs 

  
 
Variogram Parameters 
 C0 C1 Range Model 
Density 57.64 74.88 380.3 spherical 
Ratio 0.01087 0.03256 236.1 spherical 
 



 

 

 
Cob Diameter      Cob Length 

 
 
Variogram Parameters 
 C0 C1 Range Model 
Cob 
Diameter 

3.485 4.255 26.08 exponential 

Cob length 51.21 121.4 32.24 exponential 
 
 
Grain Moisture % 

 
 
Variogram Parameters 
 C0 C1 Range Model 
Grain 
Moisture (73 
samples)  

4.587 2.157 336.4 spherical 

 
 
 
 
 
 



 

 

APPENDIX F:  Management Class response to Midseason and Harvest samples 

 
 
Field Manage-

ment 
Class 

Plant 
Density 
Midseas

on) 

Plant 
Height 

Tiller % Cob 
Length 

Cob 
Diamete

r 

Yield 
(1º 

Cobs) 

Yield 
(2º 

Cobs) 

Grain 
Moistur

e % 

Insect 
Pressure 

% 

Plant 
Density 
Harvest 

Ratio 1º 
to 2º 
Cobs 

Leaf 
Tissue N 

Soil2 10.1 -2 -4.8 -0.2 -0.1 -1 -0.7 0.8 4.9 -1.1 -1.1 -5.5 Bidge-
ribbin Soil3 6.5 0.9 -10.3 2.3 2.2 -0.7 -2.2 3.2 7.1 2.1 -2.5 -0.3 
 Crop2 34.5 34.1 -4 -1 -0.9 5 -1.2 -1.3 -1.1 0.3 -0.4 10.5 
 Crop3 67.8 63.3 -4.6 3.7 4 10.7 0.4 2.7 3.8 4.6 0 3.9 
 All2 34.5 15.7 -4.6 -1.3 -1.3 2.8 -1.2 -0.9 -0.6 -0.7 -1.2 -3.8 
 All3 31.8 13.6 -5.2 -1.1 -1.4 -1.5 -0.8 0.1 1.1 -1.4 -2.3 15.9 
              
Pivot 1 Soil2 23 40.4 -5.5 -2.2 -2.9 -2.2 -3.2 -3.7 . -3 -2.4 -6.1 
 Soil3 5.4 17.8 3.3 1.4 -0.6 4.6 -3.4 7.8 . 2.2 -4.7 4.5 
 Crop2 3 17.5 5.9 26.4 26.4 19.2 5.3 4 . 23 22.2 2.6 
 Crop3 -7.2 8.1 19.8 27.6 27.1 14 2.8 -3.8 . 28.7 19.1 6.5 
 All2 11.1 33.1 -5.6 24.6 25.3 15.5 5.6 -6.4 . 23.4 18.1 -4.4 
 All3 10.4 42.8 -3.4 22.4 23.1 12.1 1.9 13.7 . 25.4 15.4 6.5 
              

Soil2 37.1 23.2 1.4 -1.9 -2.7 -3.1 -3.2 -2.5 -2.9 -2.6 -2.9 -4.8 Post 
Office Soil3 21.9 28.8 -3.3 14.6 15 21.4 2.4 -4.7 -4.9 8.6 1.4 -16.3 
 Crop2 37.1 30.7 14.7 2.7 3.8 24.2 22.5 0 -2.3 5.2 18.9 26.2 
 Crop3 42.1 53.7 32.2 3.1 3 19.4 21 23.6 11.3 -1.6 10.9 18.7 
 All2 37.1 23.2 1.4 -2.4 -3 -1.5 -2.8 -2.5 -2.5 -3.1 -3.2 -4.8 
 All3 38.8 20.4 -2.3 6.1 3.1 12.1 0.4 2.7 2.4 -3.3 -0.1 -6.5 
R2 values (percentage of variation explained) for different Management Class Models across a range of crop measurements. 
 
 
 
 



 

 

APPENDIX G:  Maps of Management classes derived from Soil and 
Soil+Crop data 
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APPENDIX H: Results of regression analysis 

a) Yield Models 
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Figure H1:  Plots of model fits and model parameters for prediction of yield using cob 
length, plant density and moisture content.  Plots show left -Bidgeribbin (red), centre – 
Post Office (green) and right - Pivot 1 (blue) 
 
 
Regression equations for prediction of yield for the three fields: 
 
Bidgeribbin 

Yield (ton.ha-1) = -45.902 + 0.287*Plant Density + 0.208*Cob Length (mm) + 
0.091*Moisture % 

Post Office 
Yield (ton.ha-1) = -32.676 + 0.221*Plant Density + 0.213*Cob Length (mm) + -

0.033*Moisture % 
Pivot 1 

Yield (ton.ha-1) = -36.427 + 0.250 * Plant Density + 0.156*Cob Length (mm) + 
0.0216365132313533 * Moisture %, 

 



 

 

b) Quality Models 
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Figure H2:  Plots of model fits and model parameters for prediction of cob length using 
yield, plant density and moisture content.  Plots show left - Bidgeribbin (red), centre – 
Post Office (green) and right - Pivot 1 (blue) 
 
 
Regression equations for prediction of yield for the three fields: 
 
Bidgeribbin 

Cob Length (mm) = 196.884 + -1.029*Plant Density + -0.160*Moisture % + 
3.751*Yield (ton/ha) 

Post Office 
Cob Length (mm) = 167.133 + -0.742*Plant Density + -0.115*Moisture % + 

3.890*Yield (ton/ha) 
Pivot 1 

Cob Length (mm) = 193.983514149634 + -0.882445577356955 * Plant Density + 
0.111008737142057 * Moisture % + 3.70659393888917 * 
Yield (ton/ha) 



 

 

APPENDIX I:  Comments on harvest sensors. 

In the mid to late 1990s Byron Enterprises and Oxbo Corporation invested in the 
development of a yield monitor for sweet corn harvesters.  These are the harvesters that 
are used by Simplot in Australia.  Contact has been made with Mr Brian Maul (Oxbo 
Corp. Project Manager – Processed Veg. Equipment) regarding these sensors and options 
for leasing or purchase of a sensor if available.  This avenue should be exhausted before 
moving onto other options. 
 
Other potential options are adaptation of an existing system.  Load cell-based yield 
sensors may be difficult due to the short horizontal platform on the discharge conveyor.  
A light sensor (similar to a cotton sensor) may be possible at the end of the discharge 
conveyer.  A prototype system like this has been trialled at the end of the discharge 
conveyer in grapes with some success. An alternative is to use an imaging sensor.  Rapid 
imaging of the corn on the sensor belt could be be calibrated for cob size (length and 
diameter) as well as yield.  Any sensor not directly measuring mass will be subject to eror 
induced from variable moisture contents. 
 
The reliable, low maintenance, accurate sensor is obviously the goal but an imperfect 
sensor will still be of enormous value since no other information is available.  The sensor 
signal can always be recalibrated to field means or smoothed to remove noise. 
 



 

 

 
 



 

 

 
 
 



 

 

APPENDIX J:  Mean field results for yield and quality parameters from the factory (courtesy of Simplot 
Australia). 

 
District Grower Variety Paddock Gross 

Load Wt 
(ton) 

Grower 
Paid 
Tonnes 

Mean of 
Moisture 
% 

Mean Cob 
Length 
(mm) 

Mean Cob 
Diameter 
(mm) 

Area 
(ha) 

Yield 
(ton/ha) 

Bathurst McSpedden Punch Bidgeribbin 551.78 485.13 69.49 192.33 51.33 24.5 19.8 
Bathurst McSpedden Punch Post office 161.92 144.33 68.01 208 50 9 16.04 
Bathurst McSpedden Punch Pivot 1 394.66 349.47 69.27 192.67 51 16.5 21.18 
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